1 |
Chen X, Tao H, Guo Y, Wang Z, Li R, Zhao Y, Liu C, Zhao X, Wang X, Duan S. Anti-CD44 antibodies grafted immunoaffinity Fe(3)O(4)@MnO(2) nanozymes with highly oxidase-like catalytic activity for specific detection of triple-negative breast cancer MDA-MB-231 cells. Anal Chim Acta 2023;1249:340947. [PMID: 36868774 DOI: 10.1016/j.aca.2023.340947] [Reference Citation Analysis]
|
2 |
Qi C, Wang W, Zheng J, Jiang L, Meng C, Liu H, Wang J. Copper-induced synthesis of versatile FeOx nanozymes for catalytic cancer therapy. J Mater Sci 2023. [DOI: 10.1007/s10853-023-08389-4] [Reference Citation Analysis]
|
3 |
Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev 2023;52:2031-81. [PMID: 36633202 DOI: 10.1039/d2cs00352j] [Reference Citation Analysis]
|
4 |
Liu P, Hao L, Liu M, Hu S. Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy. Front Bioeng Biotechnol 2023;11. [DOI: 10.3389/fbioe.2023.1161472] [Reference Citation Analysis]
|
5 |
Zhang Y, Zhang K, Yang H, Hao Y, Zhang J, Zhao W, Zhang S, Ma S, Mao C. Highly Penetrable Drug-Loaded Nanomotors for Photothermal-Enhanced Ferroptosis Treatment of Tumor. ACS Appl Mater Interfaces 2023. [PMID: 36883991 DOI: 10.1021/acsami.3c00297] [Reference Citation Analysis]
|
6 |
Wang H, Shen Y, Chen L, Li K, Shi Y, Xu Z, Li D, Chen H, Wang W, Gao L. Enhancing catalase-like activity of Prussian blue nanozyme by gadolinium-doping for imaging-guided antitumor amplification via photodynamic therapy and chemotherapy. Materials Today Nano 2023. [DOI: 10.1016/j.mtnano.2023.100326] [Reference Citation Analysis]
|
7 |
Ding X, Zhao Z, Zhang Y, Duan M, Liu C, Xu Y. Activity Regulating Strategies of Nanozymes for Biomedical Applications. Small 2023;19:e2207142. [PMID: 36651009 DOI: 10.1002/smll.202207142] [Reference Citation Analysis]
|
8 |
Zhang Q, Sun Z, Sun W, Yu B, Liu J, Jiang C, Lu L. Engineering a synergistic antioxidant inhibition nanoplatform to enhance oxidative damage in tumor treatment. Acta Biomater 2023;158:625-36. [PMID: 36608895 DOI: 10.1016/j.actbio.2022.12.067] [Reference Citation Analysis]
|
9 |
Li D, Dai D, Xiong G, Lan S, Zhang C. Metal-Based Nanozymes with Multienzyme-Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. Small 2023;19:e2205870. [PMID: 36513384 DOI: 10.1002/smll.202205870] [Reference Citation Analysis]
|
10 |
Yang T, Zhou M, Gao M, Qin W, Wang Q, Peng H, Yao W, Qiao L, He X. Carrier-Free H(2) O(2) Self-Supplier for Amplified Synergistic Tumor Therapy. Small 2023;19:e2205692. [PMID: 36494182 DOI: 10.1002/smll.202205692] [Reference Citation Analysis]
|
11 |
Chen S, Yang J, Liang Z, Li Z, Xiong W, Fan Q, Shen Z, Liu J, Xu Y. Synergistic Functional Nanomedicine Enhances Ferroptosis Therapy for Breast Tumors by a Blocking Defensive Redox System. ACS Appl Mater Interfaces 2023;15:2705-13. [PMID: 36622364 DOI: 10.1021/acsami.2c19585] [Reference Citation Analysis]
|
12 |
Xu Q, Lan X, Lin H, Xi Q, Wang M, Quan X, Yao G, Yu Z, Wang Y, Yu M. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1842. [PMID: 35989568 DOI: 10.1002/wnan.1842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Su Y, Zhang Z, Lee LTO, Peng L, Lu L, He X, Zhang X. Amphiphilic Dendrimer Doping Enhanced pH-Sensitivity of Liposomal Vesicle for Effective Co-delivery toward Synergistic Ferroptosis-Apoptosis Therapy of Hepatocellular Carcinoma. Adv Healthc Mater 2023;12:e2202663. [PMID: 36653312 DOI: 10.1002/adhm.202202663] [Reference Citation Analysis]
|
14 |
Liu Z, Feng Z, Chen M, Zhan J, Wu R, Shi Y, Xue Y, Liu R, Zhu J, Zhang J. An orthogonally activatable CRISPR-Cas13d nanoprodrug to reverse chemoresistance for enhanced chemo-photodynamic therapy. Chem Sci 2023. [DOI: 10.1039/d3sc00020f] [Reference Citation Analysis]
|
15 |
Lu J, Yang Y, Xu Q, Lin Y, Feng S, Mao Y, Wang D, Wang S, Zhao Q. Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coordination Chemistry Reviews 2023;474:214861. [DOI: 10.1016/j.ccr.2022.214861] [Reference Citation Analysis]
|
16 |
Meng X, Lu Z, Zhang L, Wang Z. A pH/ATP-responsive nanomedicine via disrupting multipath homeostasis of ferroptosis for enhanced cancer therapy. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141313] [Reference Citation Analysis]
|
17 |
Yang J, Wang Y, Qin G, Tian T, Ran J, Wang H, Yang C. Photogeneration of Hydroxyl Radicals Based on Aggregation-Induced Emission Luminogen-Assembled Copper Cysteamine Nanoparticles for Photodynamic Therapy. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04646] [Reference Citation Analysis]
|
18 |
Zou Y, Jin B, Li H, Wu X, Liu Y, Zhao H, Zhong D, Wang L, Chen W, Wen M, Liu YN. Cold Nanozyme for Precise Enzymatic Antitumor Immunity. ACS Nano 2022;16:21491-504. [PMID: 36453617 DOI: 10.1021/acsnano.2c10057] [Reference Citation Analysis]
|
19 |
Zhang Q, Luo Q, Liu Z, Sun M, Dong X. Nano-ROS-generating approaches to cancer dynamic therapy: Lessons from Nanoparticles. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141225] [Reference Citation Analysis]
|
20 |
Liu Q, Ren X, Hu Y, Zhou J. Versatile Electrochemical Platform for GSH Detection and its Boolean Logic Application in Related Biological Pathways. J Electrochem Soc 2022;169:127516. [DOI: 10.1149/1945-7111/aca8d7] [Reference Citation Analysis]
|
21 |
Zhang Z, Yan A, Xu Z, Tian R, Hou C, Luo Q, Sun H, Xu J, Yu S, Wang T, Liu J. Engineering Biomimetic ATP-Responsive Se-containing Core-Shell Cascade Nanozyme for Efficient Tumor Combination Therapy. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140165] [Reference Citation Analysis]
|
22 |
Yan A, Zhang Z, Gu J, Ding X, Chen Y, Du J, Wei S, Sun H, Xu J, Yu S, Liu J. Bioresponsive cisplatin crosslinked albumin hydrogel served for efficient cancer combination therapy. Nano Res . [DOI: 10.1007/s12274-022-4925-y] [Reference Citation Analysis]
|
23 |
Zhou J, Zhang Y, Du Y, Zhao R, Liu S, Li W, Wang Q, Yang P. C-CdTe Quantum Dots as Dual-Wavelength Fluorescence and Colorimetric Probes to Detect Hydrogen Peroxide, Hydroxyl Radicals, and Iron(II) in Serum. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c04099] [Reference Citation Analysis]
|
24 |
Yuan Z, Liu T, Huo X, Wang H, Wang J, Xue L, Wang B. Glutamine Transporter SLC1A5 Regulates Ionizing Radiation-Derived Oxidative Damage and Ferroptosis. Oxidative Medicine and Cellular Longevity 2022;2022:1-19. [DOI: 10.1155/2022/3403009] [Reference Citation Analysis]
|
25 |
Guo S, Yang X, Guan S, Lu J, Zhou S. Bioinspired Construction of an Enzyme-Mimetic Supramolecular Nanoagent for RNS-Augmented Cascade Chemodynamic Therapy. ACS Appl Mater Interfaces 2022. [PMID: 36197447 DOI: 10.1021/acsami.2c12823] [Reference Citation Analysis]
|
26 |
Qiao C, Wang H, Guan Q, Wei M, Li Z. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: insights and future perspectives. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.09.002] [Reference Citation Analysis]
|
27 |
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022;15:132. [PMID: 36096856 DOI: 10.1186/s13045-022-01320-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Ju J, Chen Y, Liu Z, Huang C, Li Y, Kong D, Shen W, Tang S. Modification and application of Fe3O4 nanozymes in analytical chemistry: A review. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107820] [Reference Citation Analysis]
|
29 |
Li G, Zhang X, Fei X, Li J, Liu H, Liu W, Yang Y, Li B, Liu M, Yang G, Zhang T. Chiral FA Conjugated CdTe/CdS Quantum Dots for Selective Cancer Ablation. ACS Nano 2022;16:12991-3001. [PMID: 35969155 DOI: 10.1021/acsnano.2c05517] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
30 |
Gong L, Wang C, Xu P, Gong J, Zhu C, Di S, Li Y, Mu Y, Han H, Zhang Q, Lin Z. Polymeric Nanoreactors with Chemically Tunable Redox Responsivity. ACS Appl Mater Interfaces 2022. [PMID: 35983858 DOI: 10.1021/acsami.2c07663] [Reference Citation Analysis]
|
31 |
Wu M, Wang Q, Chen S, Zhou Z, Li J, Sun H, Liu J, Wang G, Zhou F, Sun M. Metabolic intervention liposome for targeting glutamine-addiction of breast cancer. J Control Release 2022;350:1-10. [PMID: 35907591 DOI: 10.1016/j.jconrel.2022.07.034] [Reference Citation Analysis]
|
32 |
Zhang S, Zhang J, Fan X, Liu H, Zhu M, Yang M, Zhang X, Zhang H, Yu F. Ionizing Radiation-Induced Ferroptosis Based on Nanomaterials. IJN 2022;Volume 17:3497-507. [DOI: 10.2147/ijn.s372947] [Reference Citation Analysis]
|
33 |
Yang J, Zeng W, Fu X, Chen L, Yu X, Xu P, Huang W, Leng F, Yu C, Yang Z. Targeted intelligent mesoporous polydopamine nanosystems for multimodal synergistic tumor treatment. J Mater Chem B 2022;10:5644-54. [PMID: 35819133 DOI: 10.1039/d2tb00973k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Yu L, Li W, Yang P, Zhang W, Tao H, Ge G, Yang H, Bai J, Wang H, Geng D. Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.06.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
35 |
He M, Du C, Xia J, Zhang ZG, Dong CM. Multivalent Polypeptide and Tannic Acid Cooperatively Iron-Coordinated Nanohybrids for Synergistic Cancer Photothermal Ferroptosis Therapy. Biomacromolecules 2022. [PMID: 35583462 DOI: 10.1021/acs.biomac.2c00409] [Reference Citation Analysis]
|