1 |
Tashiro K, Akiyama M, Kashiwagi K, Okazoe T. The Fluorocarbene Exploit: Enforcing Alternation in Ring-Opening Metathesis Polymerization. J Am Chem Soc 2023;145:2941-50. [PMID: 36701256 DOI: 10.1021/jacs.2c11373] [Reference Citation Analysis]
|
2 |
Xu J, Hadjichristidis N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Progress in Polymer Science 2023. [DOI: 10.1016/j.progpolymsci.2023.101656] [Reference Citation Analysis]
|
3 |
Mandal A, Mandal I, Kilbinger AFM. Catalytic Living Ring-Opening Metathesis Polymerization Using Vinyl Ethers as Effective Chain-Transfer Agents. Angew Chem Int Ed Engl 2023;62:e202211842. [PMID: 36445835 DOI: 10.1002/anie.202211842] [Reference Citation Analysis]
|
4 |
Babaremu K, Oladijo OP, Akinlabi E. Biopolymers: A suitable REPLACEMENT for plastics in product packaging. Advanced Industrial and Engineering Polymer Research 2023. [DOI: 10.1016/j.aiepr.2023.01.001] [Reference Citation Analysis]
|
5 |
Si G, Chen C. Cyclic–acyclic monomers metathesis polymerization for the synthesis of degradable thermosets, thermoplastics and elastomers. Nat Synth 2022. [DOI: 10.1038/s44160-022-00163-9] [Reference Citation Analysis]
|
6 |
Davydovich O, Paul JE, Feist JD, Aw JE, Balta Bonner FJ, Lessard JJ, Tawfick S, Xia Y, Sottos NR, Moore JS. Frontal Polymerization of Dihydrofuran Comonomer Facilitates Thermoset Deconstruction. Chem Mater . [DOI: 10.1021/acs.chemmater.2c02045] [Reference Citation Analysis]
|
7 |
Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem. [DOI: 10.1038/s41570-022-00420-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
8 |
Mandal A, Mandal I, Kilbinger AFM. Catalytic Syntheses of Degradable Polymers via Ring-Opening Metathesis Copolymerization Using Vinyl Ethers as Chain Transfer Agents. Macromolecules. [DOI: 10.1021/acs.macromol.2c01373] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
9 |
Pal S, Mandal I, Kilbinger AFM. Controlled Alternating Metathesis Copolymerization of Terminal Alkynes. ACS Macro Lett 2022;:847-53. [PMID: 35736023 DOI: 10.1021/acsmacrolett.2c00258] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
10 |
Quach PK, Hsu JH, Keresztes I, Fors BP, Lambert TH. Metal-Free Ring-Opening Metathesis Polymerization with Hydrazonium Initiators. Angew Chem Int Ed Engl 2022;61:e202203344. [PMID: 35302707 DOI: 10.1002/anie.202203344] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
11 |
Sui X, Gutekunst WR. Cascade Alternating Metathesis Cyclopolymerization of Diynes and Dihydrofuran. ACS Macro Lett 2022;11:630-5. [PMID: 35570817 DOI: 10.1021/acsmacrolett.2c00140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
12 |
Zhang M, Biesold GM, Choi W, Yu J, Deng Y, Silvestre C, Lin Z. Recent advances in polymers and polymer composites for food packaging. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.01.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
|
13 |
Shi C, Clarke RW, McGraw ML, Chen EY. Closing the "One Monomer-Two Polymers-One Monomer" Loop via Orthogonal (De)polymerization of a Lactone/Olefin Hybrid. J Am Chem Soc 2022. [PMID: 35084829 DOI: 10.1021/jacs.1c12278] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
|
14 |
Koo B, Kim D, Song DY, Han WJ, Kim D, Park JW, Kim M, Kim C. The formation of photodegradable nitrophenylene polymers via ring-opening metathesis polymerization. Polym Chem . [DOI: 10.1039/d2py00684g] [Reference Citation Analysis]
|
15 |
Kimura T, Kuroda K, Kubota H, Ouchi M. Metal-Catalyzed Switching Degradation of Vinyl Polymers via Introduction of an "In-Chain" Carbon-Halogen Bond as the Trigger. ACS Macro Lett 2021;10:1535-9. [PMID: 35549134 DOI: 10.1021/acsmacrolett.1c00601] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Yang Y, Yu K, Liu S, Yan J, Lai H, Xing F, Xiao P. Radical Ring-Opening Single Unit Monomer Insertion: An Approach to Degradable and Biocompatible Sequence-Defined Oligomers. Macromolecules 2021;54:10923-30. [DOI: 10.1021/acs.macromol.1c01991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
17 |
Feist JD, Lee DC, Xia Y. A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization. Nat Chem 2021. [PMID: 34795434 DOI: 10.1038/s41557-021-00810-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
18 |
Huang B, Wei M, Vargo E, Qian Y, Xu T, Toste FD. Backbone-Photodegradable Polymers by Incorporating Acylsilane Monomers via Ring-Opening Metathesis Polymerization. J Am Chem Soc 2021;143:17920-5. [PMID: 34677051 DOI: 10.1021/jacs.1c06836] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
|
19 |
Lai H, Ouchi M. Backbone-Degradable Polymers via Radical Copolymerizations of Pentafluorophenyl Methacrylate with Cyclic Ketene Acetal: Pendant Modification and Efficient Degradation by Alternating-Rich Sequence. ACS Macro Lett 2021;10:1223-8. [PMID: 35549050 DOI: 10.1021/acsmacrolett.1c00513] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
20 |
Sun H, Liang Y, Thompson MP, Gianneschi NC. Degradable polymers via olefin metathesis polymerization. Progress in Polymer Science 2021;120:101427. [DOI: 10.1016/j.progpolymsci.2021.101427] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
21 |
Youn G, Sampson NS. Substituent Effects Provide Access to Tetrasubstituted Ring-Opening Olefin Metathesis of Bicyclo[4.2.0]oct-6-enes. ACS Org Inorg Au 2021;1:29-36. [PMID: 34693402 DOI: 10.1021/acsorginorgau.1c00016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
22 |
Kamali Shahri SM, Sharifi S, Mahmoudi M. Interdependency of influential parameters in therapeutic nanomedicine. Expert Opin Drug Deliv 2021;:1-15. [PMID: 33887999 DOI: 10.1080/17425247.2021.1921732] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Elling BR, Su JK, Xia Y. Polymerization of Cyclopropenes: Taming the Strain for the Synthesis of Controlled and Sequence-Regulated Polymers. Acc Chem Res 2021;54:356-65. [PMID: 33371668 DOI: 10.1021/acs.accounts.0c00638] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
24 |
Rizzo A, Peterson GI, Bhaumik A, Kang C, Choi T. Sugar‐Based Polymers from d ‐Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angew Chem 2021;133:862-868. [DOI: 10.1002/ange.202012544] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Shen M, Vijjamarri S, Cao H, Solis K, Robertson ML. Degradability, thermal stability, and high thermal properties in spiro polycycloacetals partially derived from lignin. Polym Chem 2021;12:5986-5998. [DOI: 10.1039/d1py01017d] [Reference Citation Analysis]
|
26 |
Rizzo A, Peterson GI, Bhaumik A, Kang C, Choi TL. Sugar-Based Polymers from d-Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angew Chem Int Ed Engl 2021;60:849-55. [PMID: 33067845 DOI: 10.1002/anie.202012544] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
27 |
Liu P, Dong Z, Kilbinger AFM. Mono-telechelic polymers by catalytic living ring-opening metathesis polymerization with second-generation Hoveyda–Grubbs catalyst. Mater Chem Front 2020;4:2791-6. [DOI: 10.1039/d0qm00417k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|