BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Noy JM, Cao C, Stenzel M. Length of the Stabilizing Zwitterionic Poly(2-methacryloyloxyethyl phosphorycholine) Block Influences the Activity of the Conjugated Arsenic Drug in Drug-Directed Polymerization-Induced Self-Assembly Particles. ACS Macro Lett 2019;8:57-63. [PMID: 35619410 DOI: 10.1021/acsmacrolett.8b00853] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Lages M, Nicolas J. In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Progress in Polymer Science 2023;137:101637. [DOI: 10.1016/j.progpolymsci.2022.101637] [Reference Citation Analysis]
2 Jurkūnas M, Klimkevičius V, Uscilaitė A, Makuška R. Synthesis of Superhydrophilic Gradient-Like Copolymers: Kinetics of the RAFT Copolymerization of Methacryloyloxyethyl Phosphorylcholine with PEO Methacrylate. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111764] [Reference Citation Analysis]
3 Damsongsang P, Yusa S, Hoven VP. Zwitterionic nano-objects having functionalizable hydrophobic core: Formation via polymerization-induced self-assembly and their morphology. European Polymer Journal 2022;179:111536. [DOI: 10.1016/j.eurpolymj.2022.111536] [Reference Citation Analysis]
4 Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Coumes F, Stoffelbach F, Rieger J. Polymerization‐Induced Self‐Assembly: From Macromolecular Engineering Toward Applications. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0037] [Reference Citation Analysis]
6 Gagliardi M, Cecchini M. Bio-inspired nanoparticles as drug delivery vectors. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00002-8] [Reference Citation Analysis]
7 Braatz D, Dimde M, Ma G, Zhong Y, Tully M, Grötzinger C, Zhang Y, Mavroskoufis A, Schirner M, Zhong Z, Ballauff M, Haag R. Toolbox of Biodegradable Dendritic (Poly glycerol sulfate)-SS-poly(ester) Micelles for Cancer Treatment: Stability, Drug Release, and Tumor Targeting. Biomacromolecules 2021;22:2625-40. [PMID: 34076415 DOI: 10.1021/acs.biomac.1c00333] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Tobin H, Liarou E, Song J, Magiakos A, Wilson P. Synthesis and self-assembly of corona-functionalised polymeric arsenical nanoparticles. European Polymer Journal 2021;144:110235. [DOI: 10.1016/j.eurpolymj.2020.110235] [Reference Citation Analysis]
9 Damsongsang P, Hoven VP, Yusa S. Core-functionalized nanoaggregates: preparation via polymerization-induced self-assembly and their applications. New J Chem 2021;45:12776-91. [DOI: 10.1039/d1nj01791h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Cartwright A, Jackson K, Morgan C, Anderson A, Britt DW. A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy 2020;10:1018. [DOI: 10.3390/agronomy10071018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 11.7] [Reference Citation Analysis]
11 Cao C, Chen F, Garvey CJ, Stenzel MH. Drug-Directed Morphology Changes in Polymerization-Induced Self-Assembly (PISA) Influence the Biological Behavior of Nanoparticles. ACS Appl Mater Interfaces 2020;12:30221-33. [DOI: 10.1021/acsami.0c09054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
12 Noy JM, Chen F, Akhter DT, Houston ZH, Fletcher NL, Thurecht KJ, Stenzel MH. Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules 2020;21:2320-33. [PMID: 32343128 DOI: 10.1021/acs.biomac.0c00257] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
13 Tanaka J, Evans A, Gurnani P, Kerr A, Wilson P. Functionalisation and stabilisation of polymeric arsenical nanoparticles prepared by sequential reductive and radical cross-linking. Polym Chem 2020;11:2519-31. [DOI: 10.1039/d0py00229a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
14 Ding Y, Du C, Qian J, Dong C. Zwitterionic polypeptide nanomedicine with dual NIR/reduction-responsivity for synergistic cancer photothermal-chemotherapy. Polym Chem 2019;10:4825-36. [DOI: 10.1039/c9py00986h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]