1 |
Rosales BA, Schutt K, Berry JJ, Wheeler LM. Leveraging Low-Energy Structural Thermodynamics in Halide Perovskites. ACS Energy Lett 2023. [DOI: 10.1021/acsenergylett.2c02698] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Gong N, Xu B, Mo J, Man T, Qiu J. Defect engineering of inorganic sensitizers for efficient triplet–triplet annihilation upconversion. Trends in Chemistry 2023. [DOI: 10.1016/j.trechm.2023.01.007] [Reference Citation Analysis]
|
3 |
Wang Y, Song J, Chu L, Zang Y, Tu Y, Ye J, Jin Y, Li G, Li Z, Yan W. Buried solvent assisted perovskite crystallization for efficient and stable inverted solar cells. Journal of Power Sources 2023;558:232626. [DOI: 10.1016/j.jpowsour.2023.232626] [Reference Citation Analysis]
|
4 |
Wei X, Zhang P, Xu T, Zhou H, Bai Y, Chen Q. Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chem Soc Rev 2022;51:10016-63. [PMID: 36398768 DOI: 10.1039/d2cs00110a] [Reference Citation Analysis]
|
5 |
He J, Yuan M, Wang X, Chen X, Peng X, Hu L, Zhao X, Liu J, Li J, Li K, Chen C, Tang J. Extrinsic photoresponse of Ag doped MAPbBr3 perovskite crystals. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.156230] [Reference Citation Analysis]
|
6 |
Liu A, Zhu H, Kim S, Reo Y, Kim Y, Bai S, Noh Y. Antimony fluoride ( SbF 3 ): A potent hole suppressor for tin( II )‐halide perovskite devices. InfoMat 2022. [DOI: 10.1002/inf2.12386] [Reference Citation Analysis]
|
7 |
Shimono R, Nishikubo R, Ishiwari F, Saeki A. Effects of Ammonium and Alkali Metal Additives on Anisotropic Photoconductivities and Solar Cell Efficiencies of Two-Dimensional Lead Halide Perovskites. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c06285] [Reference Citation Analysis]
|
8 |
Zou S, Zhao X, Ouyang W, Xu S. Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials. Micromachines (Basel) 2022;13. [PMID: 36296000 DOI: 10.3390/mi13101647] [Reference Citation Analysis]
|
9 |
Reo Y, Zhu H, Liu A, Noh Y. Molecular Doping Enabling Mobility Boosting of 2D Sn 2+ ‐Based Perovskites. Adv Funct Materials. [DOI: 10.1002/adfm.202204870] [Reference Citation Analysis]
|
10 |
Du Y, Yan Z, Xiao J, Zhang G, Ma Y, Li S, Li Y, Zhou Q, Ma L, Han X. Temperature-Dependent Luminescence and Anisotropic Optical Properties of Centimeter-Sized One-Dimensional Perovskite Trimethylammonium Lead Iodide Single Crystals. J Phys Chem Lett 2022;13:5451-60. [PMID: 35679604 DOI: 10.1021/acs.jpclett.2c01045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Dubose JT, Kamat PV. Efficacy of Perovskite Photocatalysis: Challenges to Overcome. ACS Energy Lett 2022;7:1994-2011. [DOI: 10.1021/acsenergylett.2c00765] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
|
12 |
Petrozza A. Doping of Soft Semiconductors. ACS Energy Lett 2022;7:1101-2. [DOI: 10.1021/acsenergylett.2c00368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Qin C, Xu L, Zhou Z, Song J, Ma S, Jiao Z, Jiang Y. Carrier dynamics in two-dimensional perovskites: Dion–Jacobson vs. Ruddlesden–Popper thin films. J Mater Chem A 2022;10:3069-76. [DOI: 10.1039/d1ta09549h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
14 |
Heo S, Roh K, Zhang F, Tignor SE, Bocarsly AB, Kahn A, Rand BP. Electrochemically n-Doped CsPbBr 3 Nanocrystal Thin Films. ACS Energy Lett 2022;7:211-6. [DOI: 10.1021/acsenergylett.1c02554] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
15 |
Elahi E, Dastgeer G, Siddiqui AS, Patil SA, Iqbal MW, Sharma PR. A review on two-dimensional (2D) perovskite material-based solar cells to enhance the power conversion efficiency. Dalton Trans 2021. [PMID: 34874382 DOI: 10.1039/d1dt02991f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Haque MA, Rosas Villalva D, Hernandez LH, Tounesi R, Jang S, Baran D. Role of Dopants in Organic and Halide Perovskite Energy Conversion Devices. Chem Mater 2021;33:8147-72. [DOI: 10.1021/acs.chemmater.1c01867] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Hu S, Ren Z, Djurišić AB, Rogach AL. Metal Halide Perovskites as Emerging Thermoelectric Materials. ACS Energy Lett 2021;6:3882-905. [DOI: 10.1021/acsenergylett.1c02015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
|
18 |
Latif A, Iqbal Khan MJ, Kanwal Z, Saleem M, Ahmad J, Ullah H, Mustansar Z. First principle investigations of the structural, electronic, magnetic, and optical properties of GaN co-doped with carbon and gold (C–Au@GaN). Computational Condensed Matter 2021;28:e00565. [DOI: 10.1016/j.cocom.2021.e00565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
19 |
Lyons JL. Effective Donor Dopants for Lead Halide Perovskites. Chem Mater 2021;33:6200-5. [DOI: 10.1021/acs.chemmater.1c01898] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
20 |
Mulder JT, du Fossé I, Alimoradi Jazi M, Manna L, Houtepen AJ. Electrochemical p-Doping of CsPbBr3 Perovskite Nanocrystals. ACS Energy Lett 2021;6:2519-25. [PMID: 34307881 DOI: 10.1021/acsenergylett.1c00970] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|