BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brandenberg OF, Prier CK, Chen K, Knight AM, Wu Z, Arnold FH. Stereoselective Enzymatic Synthesis of Heteroatom-Substituted Cyclopropanes. ACS Catal 2018;8:2629-34. [DOI: 10.1021/acscatal.7b04423] [Cited by in Crossref: 71] [Cited by in F6Publishing: 51] [Article Influence: 17.8] [Reference Citation Analysis]
Number Citing Articles
1 Carminati DM, Fasan R. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity. ACS Catal 2019;9:9683-97. [PMID: 32257582 DOI: 10.1021/acscatal.9b02272] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 14.3] [Reference Citation Analysis]
2 Wang W, Taber DF, Renata H. Practical Enzymatic Production of Carbocycles. Chemistry 2021;27:11773-94. [PMID: 34107092 DOI: 10.1002/chem.202101232] [Reference Citation Analysis]
3 Liu Y, You T, Wang H, Tang Z, Zhou C, Che C. Iron- and cobalt-catalyzed C(sp 3 )–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020;49:5310-58. [DOI: 10.1039/d0cs00340a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 14.0] [Reference Citation Analysis]
4 Chen K, Zhang S, Brandenberg OF, Hong X, Arnold FH. Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450-Catalyzed Carbene-Transfer Reactions. J Am Chem Soc 2018;140:16402-7. [DOI: 10.1021/jacs.8b09613] [Cited by in Crossref: 60] [Cited by in F6Publishing: 46] [Article Influence: 15.0] [Reference Citation Analysis]
5 Vargas DA, Khade RL, Zhang Y, Fasan R. Biocatalytic Strategy for Highly Diastereo‐ and Enantioselective Synthesis of 2,3‐Dihydrobenzofuran‐Based Tricyclic Scaffolds. Angew Chem 2019;131:10254-8. [DOI: 10.1002/ange.201903455] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
6 Shi Y, Yang Y, Xu S. Iridium-Catalyzed Enantioselective C(sp3 )-H Borylation of Aminocyclopropanes. Angew Chem Int Ed Engl 2022;61:e202201463. [PMID: 35194926 DOI: 10.1002/anie.202201463] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
7 Mu R, Wang Z, Wamsley MC, Duke CN, Lii PH, Epley SE, Todd LC, Roberts PJ. Application of Enzymes in Regioselective and Stereoselective Organic Reactions. Catalysts 2020;10:832. [DOI: 10.3390/catal10080832] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ren X, Chandgude AL, Fasan R. Highly Stereoselective Synthesis of Fused Cyclopropane-γ-Lactams via Biocatalytic Iron-Catalyzed Intramolecular Cyclopropanation. ACS Catal 2020;10:2308-13. [PMID: 32257580 DOI: 10.1021/acscatal.9b05383] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 16.5] [Reference Citation Analysis]
9 Shi Y, Yang Y, Xu S. Iridium‐Catalyzed Enantioselective C(sp 3 )−H Borylation of Aminocyclopropanes. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202201463] [Reference Citation Analysis]
10 Zhu Y, Zhou T, Zhang H, He J, Li H, Lang M, Wang J, Peng S. Enantioselective Synthesis of α-Aryl-β-Aminocyclopropane Carboxylic Acid Derivatives via Rh(II)-Catalyzed Cyclopropanation of Vinylsulfonamides with α-Aryldiazoesters. J Org Chem 2022;87:1074-85. [PMID: 35057627 DOI: 10.1021/acs.joc.1c02386] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zheng G, Zhou Z, Zhu G, Zhai S, Xu H, Duan X, Yi W, Li X. Rhodium(III)‐Catalyzed Enantio‐ and Diastereoselective C−H Cyclopropylation of N‐Phenoxylsulfonamides: Combined Experimental and Computational Studies. Angew Chem Int Ed 2020;59:2890-6. [DOI: 10.1002/anie.201913794] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
12 Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BCSJ 2021;94:382-96. [DOI: 10.1246/bcsj.20200316] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
13 Torrent-sucarrat M, Arrastia I, Arrieta A, Cossío FP. Stereoselectivity, Different Oxidation States, and Multiple Spin States in the Cyclopropanation of Olefins Catalyzed by Fe–Porphyrin Complexes. ACS Catal 2018;8:11140-53. [DOI: 10.1021/acscatal.8b01492] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
14 Trifonova EA, Ankudinov NM, Chusov DA, Nelyubina YV, Perekalin DS. Asymmetric cyclopropanation of electron-rich alkenes by the racemic diene rhodium catalyst: the chiral poisoning approach. Chem Commun (Camb) 2022;58:6709-12. [PMID: 35593764 DOI: 10.1039/d2cc01648f] [Reference Citation Analysis]
15 Boddaert T, Taylor JE, Bull SD, Aitken DJ. A Selective Deprotection Strategy for the Construction of trans-2-Aminocyclopropanecarboxylic Acid Derived Peptides. Org Lett 2019;21:100-3. [PMID: 30556696 DOI: 10.1021/acs.orglett.8b03533] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Schultz EE, Braffman NR, Luescher MU, Hager HH, Balskus EP. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angew Chem 2019;131:3183-7. [DOI: 10.1002/ange.201814016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Huang X, Garcia-Borràs M, Miao K, Kan SBJ, Zutshi A, Houk KN, Arnold FH. A Biocatalytic Platform for Synthesis of Chiral α-Trifluoromethylated Organoborons. ACS Cent Sci 2019;5:270-6. [PMID: 30834315 DOI: 10.1021/acscentsci.8b00679] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 18.7] [Reference Citation Analysis]
18 Ni J, Xia X, Zheng WF, Wang Z. Ti-Catalyzed Diastereoselective Cyclopropanation of Carboxylic Derivatives with Terminal Olefins. J Am Chem Soc 2022. [PMID: 35442655 DOI: 10.1021/jacs.2c02360] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Eser BE, Zhang Y, Zong L, Guo Z. Self-sufficient Cytochrome P450s and their potential applications in biotechnology. Chinese Journal of Chemical Engineering 2021;30:121-35. [DOI: 10.1016/j.cjche.2020.12.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
20 Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. Angew Chem 2021;133:16962-93. [DOI: 10.1002/ange.202014931] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
21 Brandenberg OF, Chen K, Arnold FH. Directed Evolution of a Cytochrome P450 Carbene Transferase for Selective Functionalization of Cyclic Compounds. J Am Chem Soc 2019;141:8989-95. [DOI: 10.1021/jacs.9b02931] [Cited by in Crossref: 56] [Cited by in F6Publishing: 39] [Article Influence: 18.7] [Reference Citation Analysis]
22 Dunham NP, Arnold FH. Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catal 2020;10:12239-55. [PMID: 33282461 DOI: 10.1021/acscatal.0c03606] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
23 Zhang Y. Computational Investigations of Heme Carbenes and Heme Carbene Transfer Reactions. Chem Eur J 2019;25:13231-47. [DOI: 10.1002/chem.201901984] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wu M, Lin S, Zhu G, Sun M, Zhou Z, Gao H, Yi W. Synergistic Dual Directing Groups-Enabled Diastereoselective C–H Cyclopropylation via Rh(III)-Catalyzed Couplings with Cyclopropenyl Alcohols. Org Lett 2020;22:1295-300. [DOI: 10.1021/acs.orglett.9b04608] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
25 Knight AM, Kan SBJ, Lewis RD, Brandenberg OF, Chen K, Arnold FH. Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes. ACS Cent Sci 2018;4:372-7. [PMID: 29632883 DOI: 10.1021/acscentsci.7b00548] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 19.0] [Reference Citation Analysis]
26 Nian B, Cao C, Liu Y. Lipase and Metal Chloride Hydrate-Natural Deep Eutectic Solvents Synergistically Catalyze Amidation Reaction via Multiple Noncovalent Bond Interactions. ACS Sustainable Chem Eng 2019;7:18174-84. [DOI: 10.1021/acssuschemeng.9b05691] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
27 Schultz EE, Braffman NR, Luescher MU, Hager HH, Balskus EP. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angew Chem Int Ed 2019;58:3151-5. [DOI: 10.1002/anie.201814016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
28 Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Reference Citation Analysis]
29 Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Euro J of Inorganic Chem. [DOI: 10.1002/ejic.202200215] [Reference Citation Analysis]
30 Kaur P, Tyagi V. Recent Advances in Iron‐Catalyzed Chemical and Enzymatic Carbene‐Transfer Reactions. Adv Synth Catal 2021;363:877-905. [DOI: 10.1002/adsc.202001158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
31 Miller DC, Lal RG, Marchetti LA, Arnold FH. Biocatalytic One-Carbon Ring Expansion of Aziridines to Azetidines via a Highly Enantioselective [1,2]-Stevens Rearrangement. J Am Chem Soc 2022. [PMID: 35258294 DOI: 10.1021/jacs.2c00251] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
32 Chen Y, Gardiner MG, Lan P, Banwell MG. α-Iodo-α,β-Unsaturated Ketones as Vicinal Dielectrophiles: Their Reactions with Dinucleophiles Provide New Annulation Protocols for the Formation of Carbo- and Heterocyclic Ring Systems. J Org Chem 2022. [PMID: 35438488 DOI: 10.1021/acs.joc.2c00383] [Reference Citation Analysis]
33 Li Z, Zhang M, Zhang Y, Liu S, Zhao J, Zhang Q. Multicomponent Cyclopropane Synthesis Enabled by Cu-Catalyzed Cyclopropene Carbometalation with Organoboron Reagent: Enantioselective Modular Access to Polysubstituted 2-Arylcyclopropylamines. Org Lett 2019;21:5432-7. [DOI: 10.1021/acs.orglett.9b01650] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
34 Chen K, Arnold FH. Engineering new catalytic activities in enzymes. Nat Catal 2020;3:203-13. [DOI: 10.1038/s41929-019-0385-5] [Cited by in Crossref: 151] [Cited by in F6Publishing: 65] [Article Influence: 75.5] [Reference Citation Analysis]
35 Tinoco A, Wei Y, Bacik JP, Carminati DM, Moore EJ, Ando N, Zhang Y, Fasan R. Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase. ACS Catal 2019;9:1514-24. [PMID: 31134138 DOI: 10.1021/acscatal.8b04073] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
36 Zhou AZ, Chen K, Arnold FH. Enzymatic Lactone-Carbene C–H Insertion to Build Contiguous Chiral Centers. ACS Catal 2020;10:5393-8. [DOI: 10.1021/acscatal.0c01349] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
37 Large B, Baranska NG, Booth RL, Wilson KS, Duhme-klair A. Artificial metalloenzymes: The powerful alliance between protein scaffolds and organometallic catalysts. Current Opinion in Green and Sustainable Chemistry 2021;28:100420. [DOI: 10.1016/j.cogsc.2020.100420] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
38 Ernouf G, Brayer JL, Folléas B, Demoute JP, Meyer C, Cossy J. [3,3]-Sigmatropic Rearrangement of Cyclopropenylcarbinyl Cyanates: Access to Alkylidene(aminocyclopropane) Derivatives. Chemistry 2018;24:15104-11. [PMID: 30021051 DOI: 10.1002/chem.201803231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Marshall JR, Mangas-sanchez J, Turner NJ. Expanding the synthetic scope of biocatalysis by enzyme discovery and protein engineering. Tetrahedron 2021;82:131926. [DOI: 10.1016/j.tet.2021.131926] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
40 Guengerich FP. Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catal 2018;8:10964-76. [PMID: 31105987 DOI: 10.1021/acscatal.8b03401] [Cited by in Crossref: 125] [Cited by in F6Publishing: 97] [Article Influence: 31.3] [Reference Citation Analysis]
41 Vong K, Tanaka K. In Vivo Metal Catalysis in Living Biological Systems. In: Tanaka K, Vong K, editors. Handbook of In Vivo Chemistry in Mice. Wiley; 2020. pp. 309-53. [DOI: 10.1002/9783527344406.ch11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
42 Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coordination Chemistry Reviews 2019;401:213051. [DOI: 10.1016/j.ccr.2019.213051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
43 Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts: The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. Eur J Org Chem 2019;2019:3713-34. [DOI: 10.1002/ejoc.201900208] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
44 Chandgude AL, Fasan R. Highly Diastereo‐ and Enantioselective Synthesis of Nitrile‐Substituted Cyclopropanes by Myoglobin‐Mediated Carbene Transfer Catalysis. Angew Chem 2018;130:16078-82. [DOI: 10.1002/ange.201810059] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
45 Zhang Y, Li Y, Zhou W, Zhang M, Zhang Q, Jia R, Zhao J. Assembly of polysubstituted chiral cyclopropylamines via highly enantioselective Cu-catalyzed three-component cyclopropene alkenylamination. Chem Commun (Camb) 2020;56:12250-3. [PMID: 32929423 DOI: 10.1039/d0cc01060j] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Nikolić MP, Pavlović VB, Stanojević-nikolić S, Srdić VV. Enzyme immobilization using two processing methods onto silica core-shell particles. Boletín de la Sociedad Española de Cerámica y Vidrio 2021;60:243-54. [DOI: 10.1016/j.bsecv.2020.03.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Roelfes G. Repurposed and artificial heme enzymes for cyclopropanation reactions. J Inorg Biochem 2021;222:111523. [PMID: 34217039 DOI: 10.1016/j.jinorgbio.2021.111523] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Pithani S, Karlsson S, Emtenäs H, Öberg CT. Using Spinchem Rotating Bed Reactor Technology for Immobilized Enzymatic Reactions: A Case Study. Org Process Res Dev 2019;23:1926-31. [DOI: 10.1021/acs.oprd.9b00240] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
49 Yang Y, Arnold FH. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. Acc Chem Res 2021;54:1209-25. [PMID: 33491448 DOI: 10.1021/acs.accounts.0c00591] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 41.0] [Reference Citation Analysis]
50 Gargiulo S, Soumillion P. Directed evolution for enzyme development in biocatalysis. Curr Opin Chem Biol 2021;61:107-13. [PMID: 33385931 DOI: 10.1016/j.cbpa.2020.11.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
51 Leveson-gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019;3:687-705. [DOI: 10.1038/s41570-019-0143-x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 34] [Article Influence: 22.7] [Reference Citation Analysis]
52 Zheng G, Zhou Z, Zhu G, Zhai S, Xu H, Duan X, Yi W, Li X. Rhodium(III)‐Catalyzed Enantio‐ and Diastereoselective C−H Cyclopropylation of N‐Phenoxylsulfonamides: Combined Experimental and Computational Studies. Angew Chem 2020;132:2912-8. [DOI: 10.1002/ange.201913794] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
53 Carminati DM, Decaens J, Couve‐bonnaire S, Jubault P, Fasan R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF 2 ‐Containing Trisubstituted Cyclopropanes. Angew Chem 2021;133:7148-52. [DOI: 10.1002/ange.202015895] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
54 Suzuki K, Shisaka Y, Stanfield JK, Watanabe Y, Shoji O. Enhanced cis- and enantioselective cyclopropanation of styrene catalysed by cytochrome P450BM3 using decoy molecules. Chem Commun (Camb) 2020;56:11026-9. [PMID: 32895681 DOI: 10.1039/d0cc04883f] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Cailler LP, Martynov AG, Gorbunova YG, Tsivadze AY, Sorokin AB. Carbene insertion to N–H bonds of 2-aminothiazole and 2-amino-1,3,4-thiadiazole derivatives catalyzed by iron phthalocyanine. J Porphyrins Phthalocyanines 2019;23:497-506. [DOI: 10.1142/s1088424619500354] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
56 Ren X, Chandgude AL, Carminati DM, Shen Z, Khare SD, Fasan R. Highly stereoselective and enantiodivergent synthesis of cyclopropylphosphonates with engineered carbene transferases. Chem Sci . [DOI: 10.1039/d2sc01965e] [Reference Citation Analysis]