BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Urzedo AL, Gonçalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB. Cytotoxicity and Antibacterial Activity of Alginate Hydrogel Containing Nitric Oxide Donor and Silver Nanoparticles for Topical Applications. ACS Biomater Sci Eng 2020;6:2117-34. [DOI: 10.1021/acsbiomaterials.9b01685] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 22.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang T, Zhu X, Wu F. Antibacterial gas therapy: Strategies, advances, and prospects. Bioactive Materials 2023;23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Reference Citation Analysis]
2 Panneerselvam N, Sundaramurthy D, Maruthapillai A. Pectin/Xylitol Incorporated with Various Metal Oxide Based Nanocomposite Films for its Antibacterial and Antioxidant Activity. J Polym Environ 2022. [DOI: 10.1007/s10924-022-02652-6] [Reference Citation Analysis]
3 Anugrah DSB, Darmalim LV, Polanen MRI, Putro PA, Sasongko NA, Siahaan P, Ramadhan ZR. Quantum Chemical Calculation for Intermolecular Interactions of Alginate Dimer-Water Molecules. Gels 2022;8:703. [DOI: 10.3390/gels8110703] [Reference Citation Analysis]
4 Cheng H, Wu H, Guo T, Jin Park H, Li J. Zinc insulin hexamer loaded alginate zinc hydrogel: preparation, characterization and in vivo hypoglycemic ability. Eur J Pharm Biopharm 2022:S0939-6411(22)00183-7. [PMID: 36087882 DOI: 10.1016/j.ejpb.2022.08.016] [Reference Citation Analysis]
5 Estes Bright LM, Griffin L, Mondal A, Hopkins S, Ozkan E, Handa H. Biomimetic gasotransmitter-releasing alginate beads for biocompatible antimicrobial therapy. J Colloid Interface Sci 2022;628:911-21. [PMID: 36030716 DOI: 10.1016/j.jcis.2022.08.113] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Abourehab MAS, Rajendran RR, Singh A, Pramanik S, Shrivastav P, Ansari MJ, Manne R, Amaral LS, Deepak A. Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022;23:9035. [PMID: 36012297 DOI: 10.3390/ijms23169035] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 García-Torres J, Colombi S, Macor LP, Alemán C. Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022;219:312-32. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Reference Citation Analysis]
8 Luo Z, Ng G, Zhou Y, Boyer C, Chandrawati R. Polymeric Amines Induce Nitric Oxide Release from S-Nitrosothiols. Small 2022;:e2200502. [PMID: 35789202 DOI: 10.1002/smll.202200502] [Reference Citation Analysis]
9 Tavares G, Alves P, Simões P. Recent Advances in Hydrogel-Mediated Nitric Oxide Delivery Systems Targeted for Wound Healing Applications. Pharmaceutics 2022;14:1377. [DOI: 10.3390/pharmaceutics14071377] [Reference Citation Analysis]
10 Sun W, Lu K, Wang L, Hao Q, Liu J, Wang Y, Wu Z, Chen H. Introducing SuFEx click chemistry into aliphatic polycarbonates: a novel toolbox/platform for post-modification as biomaterials. J Mater Chem B 2022. [PMID: 35734968 DOI: 10.1039/d2tb01052f] [Reference Citation Analysis]
11 Scandorieiro S, Rodrigues BCD, Nishio EK, Panagio LA, de Oliveira AG, Durán N, Nakazato G, Kobayashi RKT. Biogenic Silver Nanoparticles Strategically Combined With Origanum vulgare Derivatives: Antibacterial Mechanism of Action and Effect on Multidrug-Resistant Strains. Front Microbiol 2022;13:842600. [DOI: 10.3389/fmicb.2022.842600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS Appl Bio Mater 2022. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
13 Sugiura Y, Ono F, Nohara M, Horino R, Kutara K, Kanda T, Oowada K, Horie M, Makita Y. Ag-substituted octacalcium phosphate blocks that exhibit high osteoconductivity and high antibacterial activity toward various pathogens. Materials Today Communications 2022;30:103130. [DOI: 10.1016/j.mtcomm.2022.103130] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
14 Kailasa SK, Joshi DJ, Kateshiya MR, Koduru JR, Malek NI. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Materials Today Chemistry 2022;23:100746. [DOI: 10.1016/j.mtchem.2021.100746] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
15 Fasiku VO, Omolo CA, Kiruri LW, Devnarain N, Faya M, Mocktar C, Govender T. A hyaluronic acid-based nanogel for the co-delivery of nitric oxide (NO) and a novel antimicrobial peptide (AMP) against bacterial biofilms. Int J Biol Macromol 2022;206:381-97. [PMID: 35202637 DOI: 10.1016/j.ijbiomac.2022.02.099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Xie Y, Wang X, Sun M, Qin X, Su X, Ma X, Liu X, Zhong C, Jia S. Heterochiral peptide-based biocompatible and injectable supramolecular hydrogel with antibacterial activity. J Mater Sci. [DOI: 10.1007/s10853-022-06982-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhang H, Tang N, Yu X, Guo Z, Liu Z, Sun X, Li M, Hu J. Natural glycyrrhizic acid-tailored hydrogel with in-situ gradient reduction of AgNPs layer as high-performance, multi-functional, sustainable flexible sensors. Chemical Engineering Journal 2022;430:132779. [DOI: 10.1016/j.cej.2021.132779] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Yoong WC, Loke CF, Juan JC, Yusoff K, Mohtarrudin N, Tatsuma T, Xu Y, Lim TH. Alginate-enabled green synthesis of S/Ag1.93S nanoparticles, their photothermal property and in-vitro assessment of their anti-skin-cancer effects augmented by a NIR laser. Int J Biol Macromol 2022:S0141-8130(22)00078-2. [PMID: 35041888 DOI: 10.1016/j.ijbiomac.2022.01.062] [Reference Citation Analysis]
19 Ghalei S, Douglass M, Handa H. Nitric Oxide-Releasing Gelatin Methacryloyl/Silk Fibroin Interpenetrating Polymer Network Hydrogels for Tissue Engineering Applications. ACS Biomater Sci Eng 2021. [PMID: 34890206 DOI: 10.1021/acsbiomaterials.1c01121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Sun W, Liu J, Hao Q, Lu K, Wu Z, Chen H. A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties. J Mater Chem B 2021. [PMID: 34889346 DOI: 10.1039/d1tb01968f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Fincheira P, Rubilar O, Tortella G, Medina C, Seabra AB, Nascimento MHM, Diez MC, Quiroz A. Formulation of a Controlled-Release Carrier for 2-ketones Based on Solid Lipid Nanoparticles to Increase Seedling Growth in Lactuca sativa and Solanum lycopersicum. J Soil Sci Plant Nutr 2021;21:3002-3015. [DOI: 10.1007/s42729-021-00585-y] [Reference Citation Analysis]
22 Qian Y, Kumar R, Chug MK, Massoumi H, Brisbois EJ. Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials. ACS Appl Mater Interfaces 2021. [PMID: 34714640 DOI: 10.1021/acsami.1c10964] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
23 Haidari H, Bright R, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Eradication of Mature Bacterial Biofilms with Concurrent Improvement in Chronic Wound Healing Using Silver Nanoparticle Hydrogel Treatment. Biomedicines 2021;9:1182. [PMID: 34572368 DOI: 10.3390/biomedicines9091182] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
24 Yang Y, Zhou Y, Li Y, Guo L, Zhou J, Chen J. Injectable and self-healing hydrogel containing nitric oxide donor for enhanced antibacterial activity. Reactive and Functional Polymers 2021;166:105003. [DOI: 10.1016/j.reactfunctpolym.2021.105003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
26 Asghar MA, Yousuf RI, Shoaib MH, Asghar MA, Mumtaz N. A Review on Toxicity and Challenges in Transferability of Surface-functionalized Metallic Nanoparticles from Animal Models to Humans. BIO Integration 2021;2:71-80. [DOI: 10.15212/bioi-2020-0047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Tortella GR, Pieretti JC, Rubilar O, Fernández-Baldo M, Benavides-Mendoza A, Diez MC, Seabra AB. Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives. Crit Rev Biotechnol 2021;:1-19. [PMID: 34233551 DOI: 10.1080/07388551.2021.1939260] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
28 Claudio-Rizo JA, Escobedo-Estrada N, Carrillo-Cortes SL, Cabrera-Munguía DA, Flores-Guía TE, Becerra-Rodriguez JJ. Highly absorbent hydrogels comprised from interpenetrated networks of alginate-polyurethane for biomedical applications. J Mater Sci Mater Med 2021;32:70. [PMID: 34117933 DOI: 10.1007/s10856-021-06544-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
29 Wu M, Lu Z, Wu K, Nam C, Zhang L, Guo J. Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing. J Mater Chem B 2021. [PMID: 34109343 DOI: 10.1039/d1tb00847a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
30 Fincheira P, Jofré I, Tortella G, Medina C, Quiroz A, Seabra AB, Nascimento MHM, Diez MC, Rubilar O. The Prospection of Plant Response to 2-Ketones Released from Nanostructured Lipid Carriers. J Soil Sci Plant Nutr 2021;21:1474-1483. [DOI: 10.1007/s42729-021-00454-8] [Reference Citation Analysis]
31 Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021;21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
32 Bao S, Gao J, Xu T, Li N, Chen W, Lu W. Anti-freezing and antibacterial conductive organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chemical Engineering Journal 2021;411:128470. [DOI: 10.1016/j.cej.2021.128470] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 37.0] [Reference Citation Analysis]
33 Prasher P, Sharma M, Mehta M, Satija S, Aljabali AA, Tambuwala MM, Anand K, Sharma N, Dureja H, Jha NK, Gupta G, Gulati M, Singh SK, Chellappan DK, Paudel KR, Hansbro PM, Dua K. Current-status and applications of polysaccharides in drug delivery systems. Colloid and Interface Science Communications 2021;42:100418. [DOI: 10.1016/j.colcom.2021.100418] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
34 Weng Z, Yu F, Leng Q, Zhao S, Xu Y, Zhang W, Zhu Z, Ye J, Wei Q, Wang X. Electrical and visible light dual-responsive ZnO nanocomposite with multiple wound healing capability. Mater Sci Eng C Mater Biol Appl 2021;124:112066. [PMID: 33947559 DOI: 10.1016/j.msec.2021.112066] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
35 Zhou J, Huang Z, Sun Y, Cui M, Luo Z, Yu B, Zou X, Hu H. Improved antifouling properties of PVA hydrogel via an organic semiconductor graphitic carbon nitride catalyzed surface-initiated photo atom transfer radical polymerization. Colloids Surf B Biointerfaces 2021;203:111718. [PMID: 33774491 DOI: 10.1016/j.colsurfb.2021.111718] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
36 Gutierrez Cisneros C, Bloemen V, Mignon A. Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review. Polymers (Basel) 2021;13:760. [PMID: 33671032 DOI: 10.3390/polym13050760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
37 Nasrollahzadeh M, Soleimani F, Soheili Bidgoli NS, Shafiei N, Nezafat Z, Baran T. Biological applications of biopolymer-based (nano)materials. Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications 2021. [DOI: 10.1016/b978-0-323-89970-3.00006-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Pelegrino MT, Pieretti JC, Nakazato G, Gonçalves MC, Moreira JC, Seabra AB. Chitosan chemically modified to deliver nitric oxide with high antibacterial activity. Nitric Oxide 2021;106:24-34. [PMID: 33098968 DOI: 10.1016/j.niox.2020.10.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
39 Sugiura Y, Obika H, Horie M, Niitsu K, Makita Y. Aesthetic Silver-Doped Octacalcium Phosphate Powders Exhibiting Both Contact Antibacterial Ability and Low Cytotoxicity. ACS Omega 2020;5:24434-44. [PMID: 33015459 DOI: 10.1021/acsomega.0c02868] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
40 Prusty K, Swain SK. Polypropylene oxide/polyethylene oxide‐cellulose hybrid nanocomposite hydrogels as drug delivery vehicle. J Appl Polym Sci 2021;138:49921. [DOI: 10.1002/app.49921] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
41 Zhong Y, Xiao H, Seidi F, Jin Y. Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules 2020;21:2983-3006. [PMID: 32672446 DOI: 10.1021/acs.biomac.0c00760] [Cited by in Crossref: 95] [Cited by in F6Publishing: 107] [Article Influence: 47.5] [Reference Citation Analysis]
42 Duncan MJ, Wheatley PS, Coghill EM, Vornholt SM, Warrender SJ, Megson IL, Morris RE. Antibacterial efficacy from NO-releasing MOF–polymer films. Mater Adv 2020;1:2509-19. [DOI: 10.1039/d0ma00650e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]