BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: López-cebral R, Silva-correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017;3:3098-122. [DOI: 10.1021/acsbiomaterials.7b00655] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Ye H, Chen J, Li Y, Yang J, Hsu C, Cao T. A hyaluronic acid granular hydrogel nerve guidance conduit promotes regeneration and functional recovery of injured sciatic nerves in rats. Neural Regen Res 2023;18:657. [DOI: 10.4103/1673-5374.350212] [Reference Citation Analysis]
2 Zieliński A, Majkowska-marzec B. Whether Carbon Nanotubes Are Capable, Promising, and Safe for their Application in Nervous System Regeneration. Some Critical Remarks and Research Strategies. Coatings 2022;12:1643. [DOI: 10.3390/coatings12111643] [Reference Citation Analysis]
3 Yang Q, Guo J, Liu Y, Guan F, Sun F, Gong X. Preparation and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/gelatin composite nanofibrous. Surfaces and Interfaces 2022;33:102231. [DOI: 10.1016/j.surfin.2022.102231] [Reference Citation Analysis]
4 Park H, Kim S, Kim S, Kim M, Kang Y, Amirthalingam S, Lee S, Hwang NS, Yang K, Kim HD. Bioactive inorganic compound MXene and its application in tissue engineering and regenerative medicine. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.10.014] [Reference Citation Analysis]
5 Kaushik G, Khatua C, Ghosh S, Lahiri D. Electrical Stimulation-Mediated Differentiation of Neural Cells on Conductive Carbon Nanofiller-Based Scaffold. Biomedical Materials & Devices 2022. [DOI: 10.1007/s44174-022-00011-6] [Reference Citation Analysis]
6 Borah R, Das JM, Upadhyay J. Surface Functionalized Polyaniline Nanofibers:Chitosan Nanocomposite for Promoting Neuronal-like Differentiation of Primary Adipose Derived Mesenchymal Stem Cells and Urease Activity. ACS Appl Bio Mater 2022. [PMID: 35775198 DOI: 10.1021/acsabm.2c00171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hromada C, Hartmann J, Oesterreicher J, Stoiber A, Daerr A, Schädl B, Priglinger E, Teuschl-Woller AH, Holnthoner W, Heinzel J, Hercher D. Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro. Biomolecules 2022;12:820. [PMID: 35740945 DOI: 10.3390/biom12060820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Lai CSE, Leyva-Aranda V, Kong VH, Lopez-Silva TL, Farsheed AC, Cristobal CD, Swain JWR, Lee HK, Hartgerink JD. A Combined Conduit-Bioactive Hydrogel Approach for Regeneration of Transected Sciatic Nerves. ACS Appl Bio Mater 2022. [PMID: 35446025 DOI: 10.1021/acsabm.2c00132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Drewry MD, Dailey MT, Rothermund K, Backman C, Dahl KN, Syed-Picard FN. Promoting and Orienting Axon Extension Using Scaffold-Free Dental Pulp Stem Cell Sheets. ACS Biomater Sci Eng 2022;8:814-25. [PMID: 34982537 DOI: 10.1021/acsbiomaterials.1c01517] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Bolognesi F, Fazio N, Boriani F, Fabbri VP, Gravina D, Pedrini FA, Zini N, Greco M, Paolucci M, Re MC, Asioli S, Foschini MP, D'Errico A, Baldini N, Marchetti C. Validation of a Cleanroom Compliant Sonication-Based Decellularization Technique: A New Concept in Nerve Allograft Production. Int J Mol Sci 2022;23:1530. [PMID: 35163474 DOI: 10.3390/ijms23031530] [Reference Citation Analysis]
12 Behtaj S, Ekberg JAK, St John JA. Advances in Electrospun Nerve Guidance Conduits for Engineering Neural Regeneration. Pharmaceutics 2022;14:219. [DOI: 10.3390/pharmaceutics14020219] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
13 Cao S, Deng Y, Zhang L, Aleahmad M. Chitosan nanoparticles, as biological macromolecule-based drug delivery systems to improve the healing potential of artificial neural guidance channels: A review. Int J Biol Macromol 2022:S0141-8130(22)00018-6. [PMID: 35031319 DOI: 10.1016/j.ijbiomac.2022.01.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
14 Convertino D, Marchetti L, Coletti C. Graphene on SiC. Silicon Carbide Technology for Advanced Human Healthcare Applications 2022. [DOI: 10.1016/b978-0-323-90609-8.00002-8] [Reference Citation Analysis]
15 Usal TD, Yesiltepe M, Yucel D, Sara Y, Hasirci V. Fabrication of a 3D Printed PCL Nerve Guide: In Vitro and In Vivo Testing. Macromol Biosci 2021;:e2100389. [PMID: 34939303 DOI: 10.1002/mabi.202100389] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Zhao Y, Wang Q, Xie C, Cai Y, Chen X, Hou Y, He L, Li J, Yao M, Chen S, Wu W, Chen X, Hong A. Peptide ligands targeting FGF receptors promote recovery from dorsal root crush injury via AKT/mTOR signaling. Theranostics 2021;11:10125-47. [PMID: 34815808 DOI: 10.7150/thno.62525] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Mert T, Metin TO, Sahin E, Yaman S, Sahin M. Neuroprotective and anti-neuropathic actions of pulsed magnetic fields with low frequencies in rats with chronic peripheral neuropathic pain. Brain Res Bull 2021;177:273-81. [PMID: 34688831 DOI: 10.1016/j.brainresbull.2021.10.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 De Stefano P, Federici AS, Draghi L. In Vitro Models for the Development of Peripheral Nerve Conduits, Part I: Design of a Fibrin Gel-Based Non-Contact Test. Polymers (Basel) 2021;13:3573. [PMID: 34685331 DOI: 10.3390/polym13203573] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Cintron-Colon AF, Almeida-Alves G, VanGyseghem JM, Spitsbergen JM. GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries. Neural Regen Res 2022;17:748-53. [PMID: 34472460 DOI: 10.4103/1673-5374.322446] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
20 Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021;7:3503-29. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
21 Doblado LR, Martínez-ramos C, Pradas MM. Biomaterials for Neural Tissue Engineering. Front Nanotechnol 2021;3:643507. [DOI: 10.3389/fnano.2021.643507] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
22 Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021;9:660259. [PMID: 33898462 DOI: 10.3389/fcell.2021.660259] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
23 Zha F, Chen W, Lv G, Wu C, Hao L, Meng L, Zhang L, Yu D. Effects of surface condition of conductive electrospun nanofiber mats on cell behavior for nerve tissue engineering. Mater Sci Eng C Mater Biol Appl 2021;120:111795. [PMID: 33545918 DOI: 10.1016/j.msec.2020.111795] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 D Alvites R, V Branquinho M, Sousa AC, Zen F, Maurina M, Raimondo S, Mendonça C, Atayde L, Geuna S, Varejão ASP, Maurício AC. Establishment of a Sheep Model for Hind Limb Peripheral Nerve Injury: Common Peroneal Nerve. Int J Mol Sci 2021;22:1401. [PMID: 33573310 DOI: 10.3390/ijms22031401] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
25 Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020;8:4. [PMID: 33383759 DOI: 10.3390/bioengineering8010004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
26 Carvalho CR, Reis RL, Oliveira JM. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Adv Exp Med Biol 2020;1249:173-201. [PMID: 32602098 DOI: 10.1007/978-981-15-3258-0_12] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Huang Z, Ma Y, Jing W, Zhang Y, Jia X, Cai Q, Ao Q, Yang X. Tracing Carbon Nanotubes (CNTs) in Rat Peripheral Nerve Regenerated with Conductive Conduits Composed of Poly(lactide-co-glycolide) and Fluorescent CNTs. ACS Biomater Sci Eng 2020;6:6344-55. [PMID: 33449666 DOI: 10.1021/acsbiomaterials.0c01065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Wang DR, Wang YH, Pan J, Tian WD. Neurotrophic effects of dental pulp stem cells in repair of peripheral nerve after crush injury. World J Stem Cells 2020; 12(10): 1196-1213 [PMID: 33178401 DOI: 10.4252/wjsc.v12.i10.1196] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
29 Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin 2020;41:1289-300. [PMID: 32123299 DOI: 10.1038/s41401-019-0338-1] [Cited by in Crossref: 56] [Cited by in F6Publishing: 62] [Article Influence: 28.0] [Reference Citation Analysis]
30 Jeon K, Huxlin KR. How scars shape the neural landscape: key molecular mediators of TGF-β1’s anti-neuritogenic effects.. [DOI: 10.1101/2020.07.28.224469] [Reference Citation Analysis]
31 Haidar MK, Timur SS, Kazanci A, Turkoglu OF, Gürsoy RN, Nemutlu E, Sargon MF, Bodur E, Gök M, Ulubayram K, Öner L, Eroğlu H. Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats. Eur J Pharm Biopharm 2020;153:1-13. [PMID: 32504798 DOI: 10.1016/j.ejpb.2020.05.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
32 Arias SL, Devorkin J, Civantos A, Jaramillo C, Allain JP. Bioinspired Interfaces for the Management of Skin Infections. Racing for the Surface 2020. [DOI: 10.1007/978-3-030-34475-7_20] [Reference Citation Analysis]
33 Tajdaran K, Chan K, Gordon T, Borschel GH. Matrices, scaffolds, and carriers for protein and molecule delivery in peripheral nerve regeneration. Experimental Neurology 2019;319:112817. [DOI: 10.1016/j.expneurol.2018.08.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
34 Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019;148:308-43. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
35 Cai Z, Gan Y, Bao C, Wu W, Wang X, Zhang Z, Zhou Q, Lin Q, Yang Y, Zhu L. Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair. Adv Healthc Mater 2019;8:e1900013. [PMID: 31074122 DOI: 10.1002/adhm.201900013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
36 Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019;221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
37 Zhang L, Xu L, Li G, Yang Y. Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids and Surfaces B: Biointerfaces 2019;173:689-97. [DOI: 10.1016/j.colsurfb.2018.10.053] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
38 Balusamy B, Senthamizhan A, Uyar T. Design and Development of Electrospun Nanofibers in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine 2019. [DOI: 10.1007/978-3-030-31202-2_2] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Zhang L, Chen S, Liang R, Chen Y, Li S, Li S, Sun Z, Wang Y, Li G, Ming A, Yang Y. Fabrication of alignment polycaprolactone scaffolds by combining use of electrospinning and micromolding for regulating Schwann cells behavior. J Biomed Mater Res A 2018;106:3123-34. [PMID: 30260557 DOI: 10.1002/jbm.a.36507] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
40 Carvalho CR, Costa JB, da Silva Morais A, López-Cebral R, Silva-Correia J, Reis RL, Oliveira JM. Tunable Enzymatically Cross-Linked Silk Fibroin Tubular Conduits for Guided Tissue Regeneration. Adv Healthc Mater 2018;7:e1800186. [PMID: 29999601 DOI: 10.1002/adhm.201800186] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]