BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Song S, Wang Y, Xie J, Sun B, Zhou N, Shen H, Shen J. Carboxymethyl Chitosan Modified Carbon Nanoparticle for Controlled Emamectin Benzoate Delivery: Improved Solubility, pH-Responsive Release, and Sustainable Pest Control. ACS Appl Mater Interfaces 2019;11:34258-67. [PMID: 31461267 DOI: 10.1021/acsami.9b12564] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Shan P, Lu Y, Liu H, Lu W, Li D, Yin X, Lian X, Li Z, Li Z. Rational design of multi-stimuli-responsive polymeric nanoparticles as a ‘Trojan horse’ for targeted pesticide delivery. Industrial Crops and Products 2023;193:116182. [DOI: 10.1016/j.indcrop.2022.116182] [Reference Citation Analysis]
2 Teng G, Chen C, Jing N, Chen C, Duan Y, Zhang L, Wu Z, Zhang J. Halloysite nanotubes-based composite material with acid/alkali dual pH response and foliar adhesion for smart delivery of hydrophobic pesticide. Chemical Engineering Journal 2023;451:139052. [DOI: 10.1016/j.cej.2022.139052] [Reference Citation Analysis]
3 Benavides-mendoza A, Juárez-maldonado A, Tortella-fuentes GR, González-fuentes JA. Quantum materials for emerging agrochemicals. Quantum Materials, Devices, and Applications 2023. [DOI: 10.1016/b978-0-12-820566-2.00002-8] [Reference Citation Analysis]
4 Tao R, You C, Qu Q, Zhang X, Deng Y, Ma W, Huang C. Recent advances in the design of controlled- and sustained-release micro/nanocarriers of pesticide. Environ Sci : Nano 2023. [DOI: 10.1039/d2en00446a] [Reference Citation Analysis]
5 Du Q, Chen L, Ding X, Cui B, Chen H, Gao F, Wang Y, Cui H, Zeng Z. Development of emamectin benzoate-loaded liposome nano-vesicles with thermo-responsive behavior for intelligent pest control. J Mater Chem B 2022;10:9896-905. [PMID: 36448451 DOI: 10.1039/d2tb02080g] [Reference Citation Analysis]
6 Bian L, Sun H, Zhou Y, Tao Y, Zhang C. Enhancement of Antioxidant Property of N-Carboxymethyl Chitosan and Its Application in Strawberry Preservation. Molecules 2022;27. [PMID: 36500590 DOI: 10.3390/molecules27238496] [Reference Citation Analysis]
7 Rani Sarkar M, Rashid MH, Rahman A, Kafi MA, Hosen MI, Rahman MS, Khan MN. Recent advances in nanomaterials based sustainable agriculture: An overview. Environmental Nanotechnology, Monitoring & Management 2022;18:100687. [DOI: 10.1016/j.enmm.2022.100687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xiao D, Wu H, Zhang Y, Kang J, Dong A, Liang W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J Control Release 2022;352:288-312. [PMID: 36273530 DOI: 10.1016/j.jconrel.2022.10.028] [Reference Citation Analysis]
9 Kumar R, Kumar N, Rajput VD, Mandzhieva S, Minkina T, Saharan BS, Kumar D, Sadh PK, Duhan JS. Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture. Nanomaterials (Basel) 2022;12. [PMID: 36432250 DOI: 10.3390/nano12223964] [Reference Citation Analysis]
10 Chen P, Zhang C, He P, Pan S, Zhong W, Wang Y, Xiao Q, Wang X, Yu W, He Z, Gao X, Song J. A Biomimetic Smart Nanoplatform as “Inflammation Scavenger” for Regenerative Therapy of Periodontal Tissue. IJN 2022;Volume 17:5165-5186. [DOI: 10.2147/ijn.s384481] [Reference Citation Analysis]
11 Wan M, Zhao Y, Li H, Zou X, Sun L. pH and NIR responsive polydopamine-doped dendritic silica carriers for pesticide delivery. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.11.009] [Reference Citation Analysis]
12 Hou R, Li C, Tan Y, Wang Y, Huang S, Zhao C, Zhang Z. Eco-friendly O-carboxymethyl chitosan base chlorfenapyr nanopesticide for effective pest control and reduced toxicity to honey bees. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.10.182] [Reference Citation Analysis]
13 Wan M, Song S, Jiang X, Liu Z, Luo Y, Gao X, Liu J, Shen J. Tannic Acid-Modified MXene as a Nanocarrier for the Delivery of β-Cyfluthrin as a Sustained Release Insecticide. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03630] [Reference Citation Analysis]
14 Song S, Wan M, Luo Y, Shen H, Shen J. Carboxymethyl Chitosan-Modified Graphene Oxide as a Multifunctional Vector for Deltamethrin Delivery and pH-Responsive Controlled Release, Enhanced Leaf Affinity, and Improved Mosquito-Killing Activity. Langmuir 2022. [PMID: 36166331 DOI: 10.1021/acs.langmuir.2c01669] [Reference Citation Analysis]
15 Zhou Y, Wu J, Zhou J, Lin S, Cheng D. pH-responsive release and washout resistance of chitosan-based nano-pesticides for sustainable control of plumeria rust. Int J Biol Macromol 2022;222:188-97. [PMID: 36150567 DOI: 10.1016/j.ijbiomac.2022.09.144] [Reference Citation Analysis]
16 Zhang DX, Wang R, Ren C, Wang Y, Li BX, Mu W, Liu F, Hou Y. One-Step Construct Responsive Lignin/Polysaccharide/Fe Nano Loading System Driven by Digestive Enzymes of Lepidopteran for Precise Delivery of Pesticides. ACS Appl Mater Interfaces 2022. [PMID: 36053529 DOI: 10.1021/acsami.2c10899] [Reference Citation Analysis]
17 Song S, Wan M, Feng W, Tian Y, Jiang X, Luo Y, Shen J. Environmentally Friendly Zr-Based MOF for Pesticide Delivery: Ultrahigh Loading Capacity, pH-Responsive Release, Improved Leaf Affinity, and Enhanced Antipest Activity. Langmuir 2022. [PMID: 36007159 DOI: 10.1021/acs.langmuir.2c01556] [Reference Citation Analysis]
18 Shi L, Liang Q, Zang Q, Lv Z, Meng X, Feng J. Construction of Prochloraz-Loaded Hollow Mesoporous Silica Nanoparticles Coated with Metal-Phenolic Networks for Precise Release and Improved Biosafety of Pesticides. Nanomaterials (Basel) 2022;12:2885. [PMID: 36014750 DOI: 10.3390/nano12162885] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Fan C, Liu Y, Dang M, Liang Y, Feng P, Wei F, Fu L, Xu C, Lin B. Polysaccharides synergistic boosting drug loading for reduction pesticide dosage and improve its efficiency. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120041] [Reference Citation Analysis]
20 Wan M, Song S, Feng W, Shen H, Luo Y, Wu W, Shen J. Metal-Organic Framework (UiO-66)-Based Temperature-Responsive Pesticide Delivery System for Controlled Release and Enhanced Insecticidal Performance against Spodoptera frugiperda. ACS Appl Bio Mater 2022. [PMID: 35904971 DOI: 10.1021/acsabm.2c00549] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Salahuddin N, Awad S, Elfiky M. Vanillin-crosslinked chitosan/ZnO nanocomposites as a drug delivery system for 5-fluorouracil: study on the release behavior via mesoporous ZrO2-Co3O4 nanoparticles modified sensor and antitumor activity. RSC Adv 2022;12:21422-39. [PMID: 35975070 DOI: 10.1039/d2ra02717h] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Chen X, Qiu L, Liu Q, He Y. Preparation of an Environmentally Friendly Nano-Insecticide through Encapsulation in Polymeric Liposomes and Its Insecticidal Activities against the Fall Armyworm, Spodoptera frugiperda. Insects 2022;13:625. [DOI: 10.3390/insects13070625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Dhiman A, Sharma AK, Agrawal G. Polymer Based Engineered Materials for Sustainable Agriculture. ACS Agric Sci Technol . [DOI: 10.1021/acsagscitech.1c00278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Shi L, Yan W, Sun L, Hou C, Wei N, Chen Z, Feng J. Preparation and Characterization of Emamectin Benzoate Nanocapsules Based on Dual Role of Polydopamine. Pest Manag Sci 2022. [PMID: 35767285 DOI: 10.1002/ps.7061] [Reference Citation Analysis]
25 Menceloğlu Y, Menceloğlu YZ, Seven SA. Triblock Superabsorbent Polymer Nanocomposites with Enhanced Water Retention Capacities and Rheological Characteristics. ACS Omega 2022;7:20486-94. [PMID: 35755356 DOI: 10.1021/acsomega.1c06961] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Forini MM, Pontes MS, Antunes DR, Lima PHD, Santos JS, Santiago EF, Grillo R. Nano-enabled weed management in agriculture: From strategic design to enhanced herbicidal activity. Plant Nano Biology 2022;1:100008. [DOI: 10.1016/j.plana.2022.100008] [Reference Citation Analysis]
27 Shahbaz U, Basharat S, Javed U, Bibi A, Yu XB. Chitosan: a multipurpose polymer in food industry. Polym Bull . [DOI: 10.1007/s00289-022-04269-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Machado TO, Grabow J, Sayer C, de Araújo PHH, Ehrenhard ML, Wurm FR. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv Colloid Interface Sci 2022;303:102645. [PMID: 35358807 DOI: 10.1016/j.cis.2022.102645] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
29 Wang J, Wang R, Shi Z, Zeng R, Ren T, Zhang B. Glutathione-Responsive Pyraclostrobin-Loaded Polyurea Microcapsules for Their Intelligent Controlled Release. J Agric Food Chem 2022. [PMID: 35467347 DOI: 10.1021/acs.jafc.1c08182] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Yang Y, Jiang Q, Peng M, Zhou Z, Du X, Yin M, Shen J, Yan S. A Star Polyamine-Based Nanocarrier Delivery System for Enhanced Avermectin Contact and Stomach Toxicity against Green Peach Aphids. Nanomaterials 2022;12:1445. [DOI: 10.3390/nano12091445] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
31 Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, Luxton TP, Ho KT, Burgess RM, Flury M, White JC, Su C. Nano-enabled pesticides for sustainable agriculture and global food security. Nat Nanotechnol 2022;17:347-60. [PMID: 35332293 DOI: 10.1038/s41565-022-01082-8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 42.0] [Reference Citation Analysis]
32 Peng F, Wang X, Zhang W, Shi X, Cheng C, Hou W, Lin X, Xiao X, Li J. Nanopesticide Formulation from Pyraclostrobin and Graphene Oxide as a Nanocarrier and Application in Controlling Plant Fungal Pathogens. Nanomaterials 2022;12:1112. [DOI: 10.3390/nano12071112] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Zhu L, Chen L, Gu J, Ma H, Wu H. Carbon-Based Nanomaterials for Sustainable Agriculture: Their Application as Light Converters, Nanosensors, and Delivery Tools. Plants (Basel) 2022;11:511. [PMID: 35214844 DOI: 10.3390/plants11040511] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Dong M, Chen D, Che L, Gu N, Yin M, Du X, Shen J, Yan S. Biotoxicity Evaluation of a Cationic Star Polymer on a Predatory Ladybird and Cooperative Pest Control by Polymer-Delivered Pesticides and Ladybird. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.1c24077] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
35 Singh G, Ramadass K, Sooriyakumar P, Hettithanthri O, Vithange M, Bolan N, Tavakkoli E, Van Zwieten L, Vinu A. Nanoporous materials for pesticide formulation and delivery in the agricultural sector. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.036] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
36 Salve R, Gajbhiye KR, Babu RJ, Gajbhiye V. Carbon nanomaterial-based stimuli-responsive drug delivery strategies. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00006-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Biondo F, Baldassarre F, Vergaro V, Ciccarella G. Controlled biocide release from smart delivery systems. Nanotechnology-Based Sustainable Alternatives for the Management of Plant Diseases 2022. [DOI: 10.1016/b978-0-12-823394-8.00010-x] [Reference Citation Analysis]
38 Kannan M, Mohan M, Elango K, Govindaraju K, Mani M. Principles and Application of Nanotechnology in Pest Management. Trends in Horticultural Entomology 2022. [DOI: 10.1007/978-981-19-0343-4_2] [Reference Citation Analysis]
39 Ejsmont A, Stasiłowicz-Krzemień A, Ludowicz D, Cielecka-Piontek J, Goscianska J. Synthesis and Characterization of Nanoporous Carbon Carriers for Losartan Potassium Delivery. Materials (Basel) 2021;14:7345. [PMID: 34885515 DOI: 10.3390/ma14237345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Gao X, Shi F, Peng F, Shi X, Cheng C, Hou W, Xie H, Lin X, Wang X. Formulation of nanopesticide with graphene oxide as the nanocarrier of pyrethroid pesticide and its application in spider mite control. RSC Adv 2021;11:36089-97. [PMID: 35492771 DOI: 10.1039/d1ra06505j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
41 Zhang DX, Wang R, Cao H, Luo J, Jing TF, Li BX, Mu W, Liu F, Hou Y. Emamectin benzoate nanogel suspension constructed from poly(vinyl alcohol)-valine derivatives and lignosulfonate enhanced insecticidal efficacy. Colloids Surf B Biointerfaces 2021;209:112166. [PMID: 34739877 DOI: 10.1016/j.colsurfb.2021.112166] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
42 Zhao M, Zhou H, Hao L, Chen H, Zhou X. A high-efficient nano pesticide-fertilizer combination fabricated by amino acid-modified cellulose based carriers. Pest Manag Sci 2021. [PMID: 34551196 DOI: 10.1002/ps.6655] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Song S, Jiang X, Shen H, Wu W, Shi Q, Wan M, Zhang J, Mo H, Shen J. MXene (Ti3C2) Based Pesticide Delivery System for Sustained Release and Enhanced Pest Control. ACS Appl Bio Mater 2021;4:6912-23. [PMID: 35006991 DOI: 10.1021/acsabm.1c00607] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
44 Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J Nanostructure Chem 2021;:1-35. [PMID: 34512930 DOI: 10.1007/s40097-021-00444-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
45 Du B, Qiu L, Chen Y, Zhang Z. Rational Design of Self-Supported CuO x -Decorated Composite Films as an Efficient and Easy-Recycling Catalyst for Styrene Oxidation. ACS Omega 2021;6:18157-68. [PMID: 34308047 DOI: 10.1021/acsomega.1c02031] [Reference Citation Analysis]
46 Wu W, Wan M, Fei Q, Tian Y, Song S, Shen H, Shen J. PDA@Ti3 C2 Tx as a Novel Carrier for Pesticide Delivery and its Application in Plant Protection: NIR-Responsive Controlled Release and Sustained Antipest Activity. Pest Manag Sci 2021. [PMID: 34216523 DOI: 10.1002/ps.6538] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
47 Zhang D, Du J, Wang R, Luo J, Jing T, Li B, Mu W, Liu F, Hou Y. Core/Shell Dual‐Responsive Nanocarriers via Iron‐Mineralized Electrostatic Self‐Assembly for Precise Pesticide Delivery. Adv Funct Materials 2021;31:2102027. [DOI: 10.1002/adfm.202102027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
48 Yang J, Feng J, He K, Chen Z, Chen W, Cao H, Yuan S. Preparation of thermosensitive buprofezin-loaded mesoporous silica nanoparticles by the sol-gel method and their application in pest control. Pest Manag Sci 2021;77:4627-37. [PMID: 34087044 DOI: 10.1002/ps.6502] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
49 Meng W, Gao Y, Tian Z, Xu W, Cheng J, Li S, Zou A. Fe 3 O 4 Magnetic Cores Coated with Metal–Organic Framework Shells as Collectable Composite Nanoparticle Vehicles for Sustained Release of the Pesticide Imidacloprid. ACS Appl Nano Mater 2021;4:5864-70. [DOI: 10.1021/acsanm.1c00800] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
50 Wang CY, Yang J, Qin JC, Yang YW. Eco-Friendly Nanoplatforms for Crop Quality Control, Protection, and Nutrition. Adv Sci (Weinh) 2021;8:2004525. [PMID: 33977068 DOI: 10.1002/advs.202004525] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
51 Song S, Wan M, Feng W, Zhang J, Mo H, Jiang X, Shen H, Shen J. Graphene Oxide as the Potential Vector of Hydrophobic Pesticides: Ultrahigh Pesticide Loading Capacity and Improved Antipest Activity. ACS Agric Sci Technol 2021;1:182-91. [DOI: 10.1021/acsagscitech.1c00002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
52 Kumar A, Kanwar R, Mehta SK. Eucalyptus Oil-Based Nanoemulsion: A Potent Green Nanowagon for Controlled Delivery of Emamectin Benzoate. ACS Agric Sci Technol 2021;1:76-88. [DOI: 10.1021/acsagscitech.0c00061] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
53 Wang Y, Song S, Chu X, Feng W, Li J, Huang X, Zhou N, Shen J. A new temperature-responsive controlled-release pesticide formulation – poly(N-isopropylacrylamide) modified graphene oxide as the nanocarrier for lambda-cyhalothrin delivery and their application in pesticide transportation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;612:125987. [DOI: 10.1016/j.colsurfa.2020.125987] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
54 Zhao M, Zhou H, Hao L, Chen H, Zhou X. Natural rosin modified carboxymethyl cellulose delivery system with lowered toxicity for long-term pest control. Carbohydr Polym 2021;259:117749. [PMID: 33673979 DOI: 10.1016/j.carbpol.2021.117749] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
55 Liu X, Li X, Zhang R, Wang L, Feng Q. A novel dual microsphere based on water-soluble thiolated chitosan/mesoporous calcium carbonate for controlled dual drug delivery. Materials Letters 2021;285:129142. [DOI: 10.1016/j.matlet.2020.129142] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
56 Sharif SNM, Hashim N, Isa IM, Bakar SA, Saidin MI, Ahmad MS, Mamat M, Hussein MZ, Zainul R. Chitosan as a coating material in enhancing the controlled release behaviour of zinc hydroxide nitrate–sodium dodecylsulphate–bispyribac nanocomposite. Chem Pap 2021;75:611-627. [DOI: 10.1007/s11696-020-01331-x] [Reference Citation Analysis]
57 Khan AAH. Plant Physiological Responses to Engineered Nanoparticles. Advances in Science, Technology & Innovation 2021. [DOI: 10.1007/978-3-030-66956-0_6] [Reference Citation Analysis]
58 Mei M, Bai B, Zheng D, Hu N, Wang H. Novel fabrication of a yeast biochar-based photothermal-responsive platform for controlled imidacloprid release. RSC Adv 2021;11:19395-405. [DOI: 10.1039/d1ra02143e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
59 Li G, Wang J, Kong X. Coprecipitation-based synchronous pesticide encapsulation with chitosan for controlled spinosad release. Carbohydrate Polymers 2020;249:116865. [DOI: 10.1016/j.carbpol.2020.116865] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
60 Yang Z, Li P, Chen Y, Gan Q, Feng Z, Jin Y, Zhou C, He Z, Wang C, Liu Y, Feng C. Construction of pH/glutathione responsive chitosan nanoparticles by a self-assembly/self-crosslinking method for photodynamic therapy. Int J Biol Macromol 2021;167:46-58. [PMID: 33271181 DOI: 10.1016/j.ijbiomac.2020.11.141] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
61 Jin Y, Zhu Z, Liang L, Lan K, Zheng Q, Wang Y, Guo Y, Zhu K, Mehmood R, Wang B. A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties. Applied Surface Science 2020;528:146539. [DOI: 10.1016/j.apsusc.2020.146539] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
62 Guan M, Hao L, Chen L, Gao F, Qiu S, Zhou H, Chen H, Zhou X. Facile Mechanical-Induced Functionalization of Hexagonal Boron Nitride and Its Application as Vehicles for Antibacterial Essential Oil. ACS Sustainable Chem Eng 2020;8:15120-33. [DOI: 10.1021/acssuschemeng.0c03781] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
63 Sharif SNM, Hashim N, Isa IM, Bakar SA, Saidin MI, Ahmad MS, Mamat M, Hussein MZ. The influence of chitosan coating on the controlled release behaviour of zinc/aluminium-layered double hydroxide-quinclorac composite. Materials Chemistry and Physics 2020;251:123076. [DOI: 10.1016/j.matchemphys.2020.123076] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
64 Hao L, Gong L, Chen L, Guan M, Zhou H, Qiu S, Wen H, Chen H, Zhou X, Akbulut M. Composite pesticide nanocarriers involving functionalized boron nitride nanoplatelets for pH-responsive release and enhanced UV stability. Chemical Engineering Journal 2020;396:125233. [DOI: 10.1016/j.cej.2020.125233] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
65 Xiao D, Liang W, Xie Z, Cheng J, Du Y, Zhao J. A temperature-responsive release cellulose-based microcapsule loaded with chlorpyrifos for sustainable pest control. J Hazard Mater 2021;403:123654. [PMID: 32814240 DOI: 10.1016/j.jhazmat.2020.123654] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 13.0] [Reference Citation Analysis]
66 Li R, Xie H, Zhang C, Sun Y, Yin H. ROS-Responsive Polymeric Micelle for Improving Pesticides Efficiency and Intelligent Release. J Agric Food Chem 2020;68:9052-60. [DOI: 10.1021/acs.jafc.0c03856] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
67 Musarurwa H, Tavengwa NT. Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydrate Polymers 2020;237:116142. [DOI: 10.1016/j.carbpol.2020.116142] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 19.0] [Reference Citation Analysis]
68 Xiang Y, Lu X, Yue J, Zhang Y, Sun X, Zhang G, Cai D, Wu Z. Stimuli-responsive hydrogel as carrier for controlling the release and leaching behavior of hydrophilic pesticide. Science of The Total Environment 2020;722:137811. [DOI: 10.1016/j.scitotenv.2020.137811] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
69 Fan Z, Qin Y, Liu S, Xing R, Yu H, Li P. Chitosan Oligosaccharide Fluorinated Derivative Control Root-Knot Nematode (Meloidogyne incognita) Disease Based on the Multi-Efficacy Strategy. Mar Drugs 2020;18:E273. [PMID: 32455898 DOI: 10.3390/md18050273] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
70 Mujtaba M, Khawar KM, Camara MC, Carvalho LB, Fraceto LF, Morsi RE, Elsabee MZ, Kaya M, Labidi J, Ullah H, Wang D. Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. Int J Biol Macromol 2020;154:683-97. [PMID: 32194112 DOI: 10.1016/j.ijbiomac.2020.03.128] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 16.0] [Reference Citation Analysis]
71 He T, Wang W, Chen B, Wang J, Liang Q, Chen B. 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 2020;236:116094. [PMID: 32172896 DOI: 10.1016/j.carbpol.2020.116094] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 11.7] [Reference Citation Analysis]
72 Song S, Shen H, Wang Y, Chu X, Xie J, Zhou N, Shen J. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids and Surfaces B: Biointerfaces 2020;185:110596. [DOI: 10.1016/j.colsurfb.2019.110596] [Cited by in Crossref: 86] [Cited by in F6Publishing: 95] [Article Influence: 28.7] [Reference Citation Analysis]
73 Kumari S, Kishor R. Chitin and chitosan: origin, properties, and applications. Handbook of Chitin and Chitosan 2020. [DOI: 10.1016/b978-0-12-817970-3.00001-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
74 Huang BB, Liu DX, Liu K, Wu G. Application of Solid Dispersion Technique to Improve Solubility and Sustain Release of Emamectin Benzoate. Molecules 2019;24:E4315. [PMID: 31779169 DOI: 10.3390/molecules24234315] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
75 Song S, Wang Y, Shen H, Zhang J, Mo H, Xie J, Zhou N, Shen J. Ultrasmall Graphene Oxide Modified with Fe 3 O 4 Nanoparticles as a Fenton-Like Agent for Methylene Blue Degradation. ACS Appl Nano Mater 2019;2:7074-84. [DOI: 10.1021/acsanm.9b01608] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]