BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin X, Fang Y, Tao Z, Gao X, Wang T, Zhao M, Wang S, Liu Y. Tumor-Microenvironment-Induced All-in-One Nanoplatform for Multimodal Imaging-Guided Chemical and Photothermal Therapy of Cancer. ACS Appl Mater Interfaces 2019;11:25043-53. [PMID: 31265228 DOI: 10.1021/acsami.9b07643] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Wu H, Wang M, Zhu J, Li Z, Wang W, Gu L, Shen F, Yang T. Mesoporous Nanoparticles for Diagnosis and Treatment of Liver Cancer in the Era of Precise Medicine. Pharmaceutics 2022;14:1760. [DOI: 10.3390/pharmaceutics14091760] [Reference Citation Analysis]
2 Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022;:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Reference Citation Analysis]
3 Du Y, Wang S, Luan J, Zhang M, Chen B, Shen Y. GOx-Functionalized Platelet Membranes-Camouflaging Nanoreactors for Enhanced Multimodal Tumor Treatment. Int J Nanomedicine 2022;17:2979-93. [PMID: 35832118 DOI: 10.2147/IJN.S358138] [Reference Citation Analysis]
4 Liang S, Liao G, Zhu W, Zhang L. Manganese-based hollow nanoplatforms for MR imaging-guided cancer therapies. Biomater Res 2022;26. [DOI: 10.1186/s40824-022-00275-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Duo Y, Suo M, Zhu D, Li Z, Zheng Z, Tang BZ. AIEgen-Based Bionic Nanozymes for the Interventional Photodynamic Therapy-Based Treatment of Orthotopic Colon Cancer. ACS Appl Mater Interfaces 2022. [PMID: 35543331 DOI: 10.1021/acsami.2c04210] [Reference Citation Analysis]
6 Luo M, Lv Y, Luo X, Ren Q, Sun Z, Li T, Wang A, Liu Y, Yang C, Li X. Developing Smart Nanoparticles Responsive to the Tumor Micro-Environment for Enhanced Synergism of Thermo-Chemotherapy With PA/MR Bimodal Imaging. Front Bioeng Biotechnol 2022;10:799610. [PMID: 35265592 DOI: 10.3389/fbioe.2022.799610] [Reference Citation Analysis]
7 Li CQ, Ma MW, Zhang B, Chen W, Yin ZY, Xie XT, Hou XL, Zhao YD, Liu B. A self-assembled nanoplatform based on Ag2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H2O2-activated near-infrared-II fluorescence imaging. Acta Biomater 2022;140:547-60. [PMID: 34923095 DOI: 10.1016/j.actbio.2021.12.013] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Zhao M, Lin X, Zhou X, Zhang Y, Wu H, Liu Y. Single Probe-Based Chemical-Tongue Sensor Array for Multiple Bacterial Identification and Photothermal Sterilization in Real Time. ACS Appl Mater Interfaces 2022;14:7706-16. [PMID: 35109650 DOI: 10.1021/acsami.1c24042] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. Small 2022;:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
10 Wang Y, Xu Y, Zhang X, Cui Y, Liang Q, Liu C, Wang X, Wu S, Yang R. Single Nano-Sized Metal–Organic Framework for Bio-Nanoarchitectonics with In Vivo Fluorescence Imaging and Chemo-Photodynamic Therapy. Nanomaterials 2022;12:287. [DOI: 10.3390/nano12020287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Ren D, Williams GR, Zhang Y, Ren R, Lou J, Zhu LM. Mesoporous Doxorubicin-Loaded Polydopamine Nanoparticles Coated with a Platelet Membrane Suppress Tumor Growth in a Murine Model of Human Breast Cancer. ACS Appl Bio Mater 2022;5:123-33. [PMID: 35014822 DOI: 10.1021/acsabm.1c00926] [Reference Citation Analysis]
12 Hu Z, Wei Q, Zhang H, Tang W, Kou Y, Sun Y, Dai Z, Zheng X. Advances in FePt-involved nano-system design and application for bioeffect and biosafety. J Mater Chem B 2021. [PMID: 34951441 DOI: 10.1039/d1tb02221k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Yao J, Yang F, Zheng F, Yao C, Xing J, Xu X, Wu A. Boosting Chemodynamic Therapy via a Synergy of Hypothermal Ablation and Oxidation Resistance Reduction. ACS Appl Mater Interfaces 2021;13:54770-82. [PMID: 34780685 DOI: 10.1021/acsami.1c16835] [Reference Citation Analysis]
14 Lee S, Kim SY. Gold Nanorod/Reduced Graphene Oxide Composite Nanocarriers for Near-Infrared-Induced Cancer Therapy and Photoacoustic Imaging. ACS Appl Nano Mater 2021;4:11849-60. [DOI: 10.1021/acsanm.1c02419] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Kou Y, Dai Z, Cui P, Hu Z, Tian L, Zhang F, Duan H, Xia Q, Liu Q, Zheng X. A flowerlike FePt/MnO2/GOx-based cascade nanoreactor with sustainable O2 supply for synergistic starvation-chemodynamic anticancer therapy. J Mater Chem B 2021;9:8480-90. [PMID: 34553729 DOI: 10.1039/d1tb01539g] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
16 Chen T, Li T, Wang J. Nanoscale Au@SiO2-drug/VEGF as an in vivo probe for osteosarcoma diagnosis and therapy. Oncol Lett 2021;22:766. [PMID: 34589145 DOI: 10.3892/ol.2021.13027] [Reference Citation Analysis]
17 Guo C, Sun J, Dong J, Cai W, Zhao X, Song B, Zhang R. A natural anthocyanin-based multifunctional theranostic agent for dual-modal imaging and photothermal anti-tumor therapy. J Mater Chem B 2021;9:7447-60. [PMID: 34551057 DOI: 10.1039/d1tb00988e] [Reference Citation Analysis]
18 Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, Xu Y, Qian X, Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater 2021;128:435-46. [PMID: 33862284 DOI: 10.1016/j.actbio.2021.04.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
19 Liu X, Sui B, Camargo PH, Wang J, Sun J. Tuning band gap of MnO2 nanoflowers by Alkali metal doping for enhanced Ferroptosis/phototherapy synergism in Cancer. Applied Materials Today 2021;23:101027. [DOI: 10.1016/j.apmt.2021.101027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zhu D, Lyu M, Jiang W, Suo M, Huang Q, Li K. A biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy. J Mater Chem B 2020;8:5312-9. [PMID: 32453333 DOI: 10.1039/d0tb00676a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
21 Zhou H, Xiong H, Zhang R, Zhang L, Zhang L, Li L, Zhang W, Zhu Z, Qiao ZA. A General Polymer-Oriented Acid-Mediated Self-Assembly Approach toward Crystalline Mesoporous Metal Sulfides. Small 2021;17:e2100428. [PMID: 33887127 DOI: 10.1002/smll.202100428] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
22 Luo S, Wang Y, Shen S, Tang P, Liu Z, Zhang S, Wu D. IR780‐Loaded Hyaluronic Acid@Gossypol–Fe(III)–EGCG Infinite Coordination Polymer Nanoparticles for Highly Efficient Tumor Photothermal/Coordinated Dual Drugs Synergistic Therapy. Adv Funct Mater 2021;31:2100954. [DOI: 10.1002/adfm.202100954] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
23 Guo Y, Liu H, Xiao H, Yuan M, Liu Y, Sedlařík V, Chin WC, Liu J, Guo L, Li C. Self-assembled Camptothecin derivatives - Curcuminoids conjugate for combinatorial chemo-photodynamic therapy to enhance anti-tumor efficacy. J Photochem Photobiol B 2021;215:112124. [PMID: 33486396 DOI: 10.1016/j.jphotobiol.2021.112124] [Reference Citation Analysis]
24 Ling C, Wang X, Shen Y. Advances in Hollow Inorganic Nanomedicines for Photothermal-Based Therapies. Int J Nanomedicine 2021;16:493-513. [PMID: 33519198 DOI: 10.2147/IJN.S285115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sun R, Ge Y, Liu H, He P, Song W, Zhang X. Erythrocyte Membrane-Encapsulated Glucose Oxidase and Manganese/Ferrite Nanocomposite as a Biomimetic “All in One” Nanoplatform for Cancer Therapy. ACS Appl Bio Mater 2021;4:701-10. [DOI: 10.1021/acsabm.0c01226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
26 Prasad R, Jain N, Conde J, Srivastava R. Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances 2020;8:100087. [DOI: 10.1016/j.mtadv.2020.100087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
27 Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. Adv Therap 2021;4:2000207. [DOI: 10.1002/adtp.202000207] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
28 Tang HX, Liu CG, Zhang JT, Zheng X, Yang DY, Kankala RK, Wang SB, Chen AZ. Biodegradable Quantum Composites for Synergistic Photothermal Therapy and Copper-Enhanced Chemotherapy. ACS Appl Mater Interfaces 2020;12:47289-98. [PMID: 32975929 DOI: 10.1021/acsami.0c14636] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
29 Liu X, Zhou Y, Xie W, Liu S, Zhao Q, Huang W. Construction of Smart Manganese Dioxide‐Based All‐in‐One Nanoplatform for Cancer Diagnosis and Therapy. Small Methods 2020;4:2000566. [DOI: 10.1002/smtd.202000566] [Cited by in Crossref: 15] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
30 Chen Z, Zhang Q, Zeng L, Zhang J, Liu Z, Zhang M, Zhang X, Xu H, Song H, Tao C. Light-triggered OVA release based on CuS@poly(lactide-co-glycolide acid) nanoparticles for synergistic photothermal-immunotherapy of tumor. Pharmacological Research 2020;158:104902. [DOI: 10.1016/j.phrs.2020.104902] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Liu Y, Lin X, Ji X, Hao Z, Tao Z. Smartphone-based enzyme-free fluorescence sensing of organophosphate DDVP. Mikrochim Acta 2020;187:419. [PMID: 32613298 DOI: 10.1007/s00604-020-04384-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
32 Sun H, Zhang Y, Chen S, Wang R, Chen Q, Li J, Luo Y, Wang X, Chen H. Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS Appl Mater Interfaces 2020;12:30145-54. [PMID: 32515573 DOI: 10.1021/acsami.0c07013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
33 Miao Y, Qiu Y, Zhang M, Yan K, Zhang P, Lu S, Liu Z, Shi X, Zhao X. Aqueous Self-Assembly of Block Copolymers to Form Manganese Oxide-Based Polymeric Vesicles for Tumor Microenvironment-Activated Drug Delivery. Nanomicro Lett 2020;12:124. [PMID: 34138110 DOI: 10.1007/s40820-020-00447-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
34 Sun Q, Wang Z, Liu B, Jia T, Wang C, Yang D, He F, Gai S, Yang P. Self-generation of oxygen and simultaneously enhancing photodynamic therapy and MRI effect: An intelligent nanoplatform to conquer tumor hypoxia for enhanced phototherapy. Chemical Engineering Journal 2020;390:124624. [DOI: 10.1016/j.cej.2020.124624] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
35 Ma Z, Sun Y, Xie J, Li P, Lu Q, Liu M, Yin P, Li H, Zhang Y, Yao S. Facile Preparation of MnO 2 Quantum Dots with Enhanced Fluorescence via Microenvironment Engineering with the Assistance of Some Reductive Biomolecules. ACS Appl Mater Interfaces 2020;12:15919-27. [DOI: 10.1021/acsami.0c00917] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 18.5] [Reference Citation Analysis]
36 He R, Wang Q, Li B, Jia J, Lu W, Shuang S. Construction of Protein-mediated Copper Sulfide Bonded Mesoporous Silica Nanoparticles Vector for Chemo-photothermal Synergistic Therapy of Cancer. Chinese Journal of Analytical Chemistry 2020;48:197-205. [DOI: 10.1016/s1872-2040(19)61216-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Wen J, Yang K, Sun S. MnO 2 -Based nanosystems for cancer therapy. Chem Commun 2020;56:7065-79. [DOI: 10.1039/d0cc02782k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
38 Zhang Z, Ji Y. Nanostructured manganese dioxide for anticancer applications: preparation, diagnosis, and therapy. Nanoscale 2020;12:17982-8003. [DOI: 10.1039/d0nr04067c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
39 Hong E, Hyun H, Lee H, Jung E, Lee D. Acid-sensitive oxidative stress inducing and photoabsorbing polysaccharide nanoparticles for combinational anticancer therapy. International Journal of Pharmaceutics 2020;574:118893. [DOI: 10.1016/j.ijpharm.2019.118893] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Wang ZH, Liu JM, Li CY, Wang D, Lv H, Lv SW, Zhao N, Ma H, Wang S. Bacterial Biofilm Bioinspired Persistent Luminescence Nanoparticles with Gut-Oriented Drug Delivery for Colorectal Cancer Imaging and Chemotherapy. ACS Appl Mater Interfaces 2019;11:36409-19. [PMID: 31525949 DOI: 10.1021/acsami.9b12853] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]