1 |
Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM. Glycopolymer-Based Materials: Synthesis, Properties, and Biosensing Applications. Top Curr Chem (Cham) 2022;380:45. [PMID: 35951265 DOI: 10.1007/s41061-022-00395-5] [Reference Citation Analysis]
|
2 |
Osifová Z, Reiberger R, Císařová I, Machara A, Dračínský M. Diketo-Ketoenol Tautomers in Curcuminoids: Synthesis, Separation of Tautomers, and Kinetic and Structural Studies. J Org Chem 2022. [PMID: 35895908 DOI: 10.1021/acs.joc.2c01357] [Reference Citation Analysis]
|
3 |
Stenzel MH. Glycopolymers for Drug Delivery: Opportunities and Challenges. Macromolecules 2022;55:4867-90. [DOI: 10.1021/acs.macromol.2c00557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
4 |
Hu P, Wang S, Zhuo Y. Strengthened CO2 adsorption over Ce/Al-promoted MgO for fast capture. Separation and Purification Technology 2022;287:120518. [DOI: 10.1016/j.seppur.2022.120518] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Castro JAM, Serikava BK, Maior CRS, Naciuk FF, Rocco SA, Ligiéro CBP, Morgon NH, Miranda PCML. Regioselection Switch in Nucleophilic Addition to Isoquinolinequinones: Mechanism and Origin of the Regioselectivity in the Total Synthesis of Ellipticine. J Org Chem 2022. [PMID: 35171607 DOI: 10.1021/acs.joc.1c02952] [Reference Citation Analysis]
|
6 |
Su L, Feng Y, Wei K, Xu X, Liu R, Chen G. Carbohydrate-Based Macromolecular Biomaterials. Chem Rev 2021. [PMID: 34338501 DOI: 10.1021/acs.chemrev.0c01338] [Cited by in Crossref: 35] [Cited by in F6Publishing: 46] [Article Influence: 17.5] [Reference Citation Analysis]
|
7 |
Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Progress in Polymer Science 2021;117:101393. [DOI: 10.1016/j.progpolymsci.2021.101393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
8 |
Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem 2021;133:2230-2234. [DOI: 10.1002/ange.202010934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
9 |
Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem Int Ed 2021;60:2202-6. [DOI: 10.1002/anie.202010934] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
10 |
Mazurek AH, Szeleszczuk Ł, Pisklak DM. Periodic DFT Calculations-Review of Applications in the Pharmaceutical Sciences. Pharmaceutics 2020;12:E415. [PMID: 32369915 DOI: 10.3390/pharmaceutics12050415] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
|
11 |
Pöppler AC, Lübtow MM, Schlauersbach J, Wiest J, Meinel L, Luxenhofer R. Loading-Dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2019;58:18540-6. [PMID: 31529576 DOI: 10.1002/anie.201908914] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
|
12 |
Pöppler A, Lübtow MM, Schlauersbach J, Wiest J, Meinel L, Luxenhofer R. Strukturmodell von Polymermizellen in Abhängigkeit von der Curcumin‐Beladung mithilfe von Festkörper‐NMR‐Spektroskopie. Angew Chem 2019;131:18712-8. [DOI: 10.1002/ange.201908914] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|