BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Demirci Dönmez ÇE, Manna PK, Nickel R, Aktürk S, van Lierop J. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines. ACS Appl Mater Interfaces 2019;11:6858-66. [DOI: 10.1021/acsami.8b22600] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Sharma K, Calmels L, Li D, Barbier A, Arras R. Influence of the cation distribution, atomic substitution, and atomic vacancies on the physical properties of CoFe2O4 and NiFe2O4 spinel ferrites. Phys Rev Materials 2022;6:124402. [DOI: 10.1103/physrevmaterials.6.124402] [Reference Citation Analysis]
2 Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coordination Chemistry Reviews 2022;473:214809. [DOI: 10.1016/j.ccr.2022.214809] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Rekha K, Ezhil Vizhi R. Exploring the Structural, Magnetic and Magnetothermal properties of (CoFe2O4) x/ (Ni0.8Zn0.2Fe2O4)1-x Nanocomposite Ferrites. Results in Physics 2022. [DOI: 10.1016/j.rinp.2022.106139] [Reference Citation Analysis]
4 Hazarika KP, Borah J. Biocompatible Tb doped Fe3O4 nanoparticles with enhanced heating efficiency for magnetic hyperthermia application. Journal of Magnetism and Magnetic Materials 2022;560:169597. [DOI: 10.1016/j.jmmm.2022.169597] [Reference Citation Analysis]
5 Ansari SM, Sinha BB, Sen D, Sastry PU, Kolekar YD, Ramana CV. Effect of Oleylamine on the Surface Chemistry, Morphology, Electronic Structure, and Magnetic Properties of Cobalt Ferrite Nanoparticles. Nanomaterials 2022;12:3015. [DOI: 10.3390/nano12173015] [Reference Citation Analysis]
6 Wang J, Kim J, Kang KW, Paek SH, Takemura Y, Bae S. AC and DC magnetic softness enhanced dual-doped γ-Fe2O3 nanoparticles for highly efficient cancer theranostics. Applied Materials Today 2022;28:101533. [DOI: 10.1016/j.apmt.2022.101533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Aldaoud A, Lemine O, Ihzaz N, El Mir L, Alrub SA, El-boubbou K. Magneto-thermal properties of Co-doped maghemite (γ-Fe2O3) nanoparticles for magnetic hyperthermia applications. Physica B: Condensed Matter 2022;639:413993. [DOI: 10.1016/j.physb.2022.413993] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Manohar A, Vijayakanth V, Vattikuti SP, Kim KH. A mini-review on AFe2O4 (A = Zn, Mg, Mn, Co, Cu, and Ni) nanoparticles: Photocatalytic, magnetic hyperthermia and cytotoxicity study. Materials Chemistry and Physics 2022;286:126117. [DOI: 10.1016/j.matchemphys.2022.126117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Ansari SR, Hempel NJ, Asad S, Svedlindh P, Bergström CAS, Löbmann K, Teleki A. Hyperthermia-Induced In Situ Drug Amorphization by Superparamagnetic Nanoparticles in Oral Dosage Forms. ACS Appl Mater Interfaces 2022;14:21978-88. [PMID: 35452221 DOI: 10.1021/acsami.2c03556] [Reference Citation Analysis]
10 Caizer IS, Caizer C. Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy. IJMS 2022;23:4350. [DOI: 10.3390/ijms23084350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Cao Y, Abbasi M, Alijani HQ, Akbarizadeh MR, Iravani S, Barani M, Najafi K, Khatami S, Mehrdad Khatami. Ceramic magnetic ferrite nanoribbons: Eco-friendly synthesis and their antifungal and parasiticidal activity. Ceramics International 2022;48:3448-54. [DOI: 10.1016/j.ceramint.2021.10.121] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
12 Almessiere M, Khan F, Auwal I, Sertkol M, Tashkandi N, Rehan I, Baykal A. Green synthesis, characterization and anti-cancer capability of Co0.5Ni0.5Nd0.02Fe1.98O4 nanocomposites. Arabian Journal of Chemistry 2022;15:103564. [DOI: 10.1016/j.arabjc.2021.103564] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Yan Z, Chaluvadi A, Fitzgerald S, Spence S, Bleyer C, Zhu J, Crawford TM, Getman RB, Watt J, Huber DL, Mefford OT. Effect of manganese substitution of ferrite nanoparticles on particle grain structure. Nanoscale Adv . [DOI: 10.1039/d2na00200k] [Reference Citation Analysis]
14 Garanina AS, Nikitin AA, Abakumova TO, Semkina AS, Prelovskaya AO, Naumenko VA, Erofeev AS, Gorelkin PV, Majouga AG, Abakumov MA, Wiedwald U. Cobalt Ferrite Nanoparticles for Tumor Therapy: Effective Heating versus Possible Toxicity. Nanomaterials (Basel) 2021;12:38. [PMID: 35009988 DOI: 10.3390/nano12010038] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Kumari S, Manglam MK, Shukla A, Kumar L, Seal P, Borah J, Kar M. Optimization of magnetic properties and hyperthermia study on soft magnetic nickel ferrite fiber. Physica B: Condensed Matter 2021;621:413280. [DOI: 10.1016/j.physb.2021.413280] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Jung S, Jung JG, Choi H, Kim M, Shim I, Kim CS. Magnetic, Mössbauer and hyperthermia properties of Co1−xMnxFe2O4 nanoparticles. J Radioanal Nucl Chem 2021;330:433-437. [DOI: 10.1007/s10967-021-07802-z] [Reference Citation Analysis]
17 Azor-Lafarga A, Gómez-Recio I, Ruiz-González ML, González-Calbet JM. Atomic Resolution Electron Microscopy: A Key Tool for Understanding the Activity of Nano-Oxides for Biomedical Applications. Nanomaterials (Basel) 2021;11:2073. [PMID: 34443904 DOI: 10.3390/nano11082073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Gangwar A, Singh A, Pal S, Sinha I, Meena SS, Prasad NK. Magnetic nanocomposites of Fe3C or Ni-substituted (Fe3C/Fe3O4) with carbon for degradation of methylene orange and p-nitrophenol. Journal of Cleaner Production 2021;309:127372. [DOI: 10.1016/j.jclepro.2021.127372] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Farkaš B, de Leeuw NH. A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. Materials (Basel) 2021;14:3611. [PMID: 34203371 DOI: 10.3390/ma14133611] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
20 Zhao P, Zhao J, Deng Y, Zeng G, Jiang Y, Liao L, Zhang S, Tao Q, Liu Z, Tang X, Tu X, Jiang L, Zhang H, Zheng Y. Application of iron/barium ferrite/carbon-coated iron nanocrystal composites in transcatheter arterial chemoembolization of hepatocellular carcinoma. J Colloid Interface Sci 2021;601:30-41. [PMID: 34058551 DOI: 10.1016/j.jcis.2021.05.102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Paswan SK, Kumari S, Kar M, Singh A, Pathak H, Borah J, Kumar L. Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. Journal of Physics and Chemistry of Solids 2021;151:109928. [DOI: 10.1016/j.jpcs.2020.109928] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
22 Özçelik S, Yalçın B, Arda L, Santos H, Sáez-puche R, Angurel L, Fuente GDL, Özçelik B. Structure, magnetic, photocatalytic and blood compatibility studies of nickel nanoferrites prepared by laser ablation technique in distilled water. Journal of Alloys and Compounds 2021;854:157279. [DOI: 10.1016/j.jallcom.2020.157279] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
23 Jamir M, Islam R, Pandey LM, Borah J. Effect of surface functionalization on the heating efficiency of magnetite nanoclusters for hyperthermia application. Journal of Alloys and Compounds 2021;854:157248. [DOI: 10.1016/j.jallcom.2020.157248] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
24 Kahmei RDR, Seal P, Borah JP. Tunable heat generation in nickel-substituted zinc ferrite nanoparticles for magnetic hyperthermia. Nanoscale Adv 2021;3:5339-47. [DOI: 10.1039/d1na00153a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Sarveena. The Role of Nanoferrites in Bio-medical Applications. Engineering Materials 2021. [DOI: 10.1007/978-981-16-7454-9_5] [Reference Citation Analysis]
26 Lemine O, Madkhali N, Hjiri M, All NA, Aida M. Comparative heating efficiency of hematite (α-Fe2O3) and nickel ferrite nanoparticles for magnetic hyperthermia application. Ceramics International 2020;46:28821-7. [DOI: 10.1016/j.ceramint.2020.08.047] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
27 Khizar S, Ahmad NM, Ahmed N, Manzoor S, Hamayun MA, Naseer N, Tenório MKL, Lebaz N, Elaissari A. Aminodextran Coated CoFe2O4 Nanoparticles for Combined Magnetic Resonance Imaging and Hyperthermia. Nanomaterials (Basel) 2020;10:E2182. [PMID: 33147727 DOI: 10.3390/nano10112182] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
28 Khishigdemberel I, Uyanga E, Hirazawa H, Enkhmend B, Bobrikov I, Sangaa D, Kiseleva T. Structural, infrared and magnetic properties of MgAl Fe2-O4 compounds: Effect of the preparation methods and Al substitution. Solid State Sciences 2020;109:106400. [DOI: 10.1016/j.solidstatesciences.2020.106400] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Liu Z, Zhang L, Xiao P, Liu L, Tang P, Wang Y, Shen S, Liu J, Gan Z, Wu D. Magnetothermally responsive composite submicron particles for recyclable catalytic applications. Chemical Engineering Journal 2020;399:125553. [DOI: 10.1016/j.cej.2020.125553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Nikazar S, Barani M, Rahdar A, Zoghi M, Kyzas GZ. Photo‐ and Magnetothermally Responsive Nanomaterials for Therapy, Controlled Drug Delivery and Imaging Applications. ChemistrySelect 2020;5:12590-609. [DOI: 10.1002/slct.202002978] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
31 Koli RR, Deshpande NG, Kim DS, Shelke AR, Fulari AV, Fulari VJ, Cho HK. Tailoring the magnetic hyperthermia performances of gram-bean-extract-mediated highly disperse MFe2O4 (M = Fe, Ni, Mn) nanoferrites. Ceramics International 2020;46:24290-301. [DOI: 10.1016/j.ceramint.2020.06.210] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
32 Taufiq A, Saputro RE, Yuliantika D, Sunaryono S, Diantoro M, Hidayat A, Hidayat N, Munasir M. Excellent antimicrobial performance of co-doped magnetite double-layered ferrofluids fabricated from natural sand. J King Saud Univ Sci 2020;32:3032-8. [PMID: 32837112 DOI: 10.1016/j.jksus.2020.08.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
33 Das A, Mohanty S, Kumar R, Kuanr BK. Tailoring the Design of a Lanthanide Complex/Magnetic Ferrite Nanocomposite for Efficient Photoluminescence and Magnetic Hyperthermia Performance. ACS Appl Mater Interfaces 2020;12:42016-29. [DOI: 10.1021/acsami.0c13690] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
34 Etemadi H, Plieger PG. Improvements in the Organic-Phase Hydrothermal Synthesis of Monodisperse M x Fe3-x O4 (M = Fe, Mg, Zn) Spinel Nanoferrites for Magnetic Fluid Hyperthermia Application. ACS Omega 2020;5:18091-104. [PMID: 32743183 DOI: 10.1021/acsomega.0c01641] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
35 Iacovita C, Stiufiuc GF, Dudric R, Vedeanu N, Tetean R, Stiufiuc RI, Lucaciu CM. Saturation of Specific Absorption Rate for Soft and Hard Spinel Ferrite Nanoparticles Synthesized by Polyol Process. Magnetochemistry 2020;6:23. [DOI: 10.3390/magnetochemistry6020023] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
36 Thandapani P, Ramalinga Viswanathan M, Vinícius‐araújo M, Bakuzis AF, Béron F, Thirumurugan A, Denardin JC, Jiménez JA, Akbari‐fakhrabadi A. Single‐phase and binary phase nanogranular ferrites for magnetic hyperthermia application. J Am Ceram Soc 2020;103:5086-97. [DOI: 10.1111/jace.17175] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
37 Hu P, Zhao Y, Zhang J, Yu S, Yan J, Wang X, Hu M, Xiang H, Long Y. In situ melt electrospun polycaprolactone/Fe3O4 nanofibers for magnetic hyperthermia. Materials Science and Engineering: C 2020;110:110708. [DOI: 10.1016/j.msec.2020.110708] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
38 Barrera G, Coisson M, Celegato F, Martino L, Tiwari P, Verma R, Kane SN, Mazaleyrat F, Tiberto P. Specific Loss Power of Co/Li/Zn-Mixed Ferrite Powders for Magnetic Hyperthermia. Sensors (Basel) 2020;20:E2151. [PMID: 32290270 DOI: 10.3390/s20072151] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
39 Tombuloglu H, Khan FA, Almessiere MA, Aldakheel S, Baykal A. Synthesis of niobium substituted cobalt-nickel nano-ferrite (Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) by hydrothermal approach show strong anti-colon cancer activities. J Biomol Struct Dyn 2021;39:2257-65. [PMID: 32241211 DOI: 10.1080/07391102.2020.1748719] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
40 Joshy KS, Augustine R, Mayeen A, Alex SM, Hasan A, Thomas S, Chi H. NiFe 2 O 4 /poly(ethylene glycol)/lipid–polymer hybrid nanoparticles for anti-cancer drug delivery. New J Chem 2020;44:18162-72. [DOI: 10.1039/d0nj01163k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
41 Pham TN, Huy TQ, Le A. Spinel ferrite (AFe 2 O 4 )-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Adv 2020;10:31622-61. [DOI: 10.1039/d0ra05133k] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
42 Raveendran S, Khan MIK, Dhayalan A, Kannan S. Synthesis, structural, mechanical, and in vitro evaluations of NiFe 2 O 4 /ZrO 2 composites. J Am Ceram Soc 2019;103:1549-62. [DOI: 10.1111/jace.16859] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]