BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sharma PK, Taneja S, Singh Y. Hydrazone-Linkage-Based Self-Healing and Injectable Xanthan–Poly(ethylene glycol) Hydrogels for Controlled Drug Release and 3D Cell Culture. ACS Appl Mater Interfaces 2018;10:30936-45. [DOI: 10.1021/acsami.8b07310] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Yang W, Xue Y, Cui X, Tang H, Li H. Targeted delivery of doxorubicin to liver used a novel biotinylated β-cyclodextrin grafted pullulan nanocarrier. Colloids and Surfaces B: Biointerfaces 2022;220:112934. [DOI: 10.1016/j.colsurfb.2022.112934] [Reference Citation Analysis]
2 Zhang Y, Qi J, Fan H, Chen P, Li B, Zhao L, Bai Z, Zhang R, Tao Y. Conductive, Injectable, and Spinnable Aniline Tetramer-Modified Polysaccharide Hydrogels for Self-Powered Electrically Responsive Drug Release. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01506] [Reference Citation Analysis]
3 Mondal P, Chatterjee K. Injectable and self-healing double network polysaccharide hydrogel as a minimally-invasive delivery platform. Carbohydrate Polymers 2022;291:119585. [DOI: 10.1016/j.carbpol.2022.119585] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Cao J, He G, Ning X, Chen X, Fan L, Yang M, Yin Y, Cai W. Preparation and properties of O-chitosan quaternary ammonium salt/polyvinyl alcohol/graphene oxide dual self-healing hydrogel. Carbohydrate Polymers 2022;287:119318. [DOI: 10.1016/j.carbpol.2022.119318] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
5 Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydrate Polymers 2022;283:119161. [DOI: 10.1016/j.carbpol.2022.119161] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
6 Shen J, Chang R, Chang L, Wang Y, Deng K, Wang D, Qin J. Light emitting CMC-CHO based self-healing hydrogel with injectability for in vivo wound repairing applications. Carbohydrate Polymers 2022;281:119052. [DOI: 10.1016/j.carbpol.2021.119052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Andrade del Olmo J, Sáez Martínez V, Pérez González R, María Alonso J. Sustained Drug Release from Biopolymer-Based Hydrogels and Hydrogel Coatings. Hydrogels - From Tradition to Innovative Platforms With Multiple Applications [Working Title] 2022. [DOI: 10.5772/intechopen.103946] [Reference Citation Analysis]
8 Muir VG, Qazi TH, Weintraub S, Torres Maldonado BO, Arratia PE, Burdick JA. Sticking Together: Injectable Granular Hydrogels with Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking. Small 2022;:e2201115. [PMID: 35315233 DOI: 10.1002/smll.202201115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
9 Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022;3:20200112. [DOI: 10.1002/viw.20200112] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Mihajlovic M, Rikkers M, Mihajlovic M, Viola M, Schuiringa G, Ilochonwu BC, Masereeuw R, Vonk L, Malda J, Ito K, Vermonden T. Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules 2022. [PMID: 35195399 DOI: 10.1021/acs.biomac.1c01583] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Sharma PK, Choudhury D, Yadav V, Murty USN, Banerjee S. 3D printing of nanocomposite pills through desktop vat photopolymerization (stereolithography) for drug delivery reasons. 3D Print Med 2022;8:3. [PMID: 35038049 DOI: 10.1186/s41205-022-00130-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Xu Q, Zhang Y, Zhang R, Tao Y. Electroresponsive and spinnable hydrogels from xanthan gum and gelatin enhanced by Fe 3+ ions coordination. J of Applied Polymer Sci 2021;138:51601. [DOI: 10.1002/app.51601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhang R, Xu Q, Tao Y, Wang X. Rheological and pH dependent properties of injectable and controlled release hydrogels based on mushroom hyperbranched polysaccharide and xanthan gum. Carbohydrate Polymer Technologies and Applications 2021;2:100063. [DOI: 10.1016/j.carpta.2021.100063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Devi V K A, Shyam R, Palaniappan A, Jaiswal AK, Oh TH, Nathanael AJ. Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers (Basel) 2021;13:3782. [PMID: 34771338 DOI: 10.3390/polym13213782] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
15 Chauhan N, Gupta P, Arora L, Pal D, Singh Y. Dexamethasone-loaded, injectable pullulan-poly(ethylene glycol) hydrogels for bone tissue regeneration in chronic inflammatory conditions. Mater Sci Eng C Mater Biol Appl 2021;130:112463. [PMID: 34702538 DOI: 10.1016/j.msec.2021.112463] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
16 Apostolides DE, Patrickios CS. Model dynamic covalent organogels based on end‐linked three‐armed oligo(ethylene glycol) star macromonomers. Journal of Polymer Science 2021;59:2309-23. [DOI: 10.1002/pol.20210392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sanaeifar N, Mäder K, Hinderberger D. Molecular-Level Release of Coumarin-3-Carboxylic Acid and Warfarin-Derivatives from BSA-Based Hydrogels. Pharmaceutics 2021;13:1661. [PMID: 34683955 DOI: 10.3390/pharmaceutics13101661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Pandit AH, Nisar S, Imtiyaz K, Nadeem M, Mazumdar N, Rizvi MMA, Ahmad S. Injectable, Self-Healing, and Biocompatible N,O-Carboxymethyl Chitosan/Multialdehyde Guar Gum Hydrogels for Sustained Anticancer Drug Delivery. Biomacromolecules 2021;22:3731-45. [PMID: 34436877 DOI: 10.1021/acs.biomac.1c00537] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
19 Han X, Lai JHC, Huang J, Park SW, Liu Y, Chan KWY. Imaging Self-Healing Hydrogels and Chemotherapeutics Using CEST MRI at 3 T. ACS Appl Bio Mater 2021;4:5605-16. [PMID: 35006724 DOI: 10.1021/acsabm.1c00411] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
20 Cimen Z, Babadag S, Odabas S, Altuntas S, Demirel G, Demirel GB. Injectable and Self-Healable pH-Responsive Gelatin–PEG/Laponite Hybrid Hydrogels as Long-Acting Implants for Local Cancer Treatment. ACS Appl Polym Mater 2021;3:3504-18. [DOI: 10.1021/acsapm.1c00419] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
21 Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021;9:3543-75. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
22 Xue X, Wu Y, Xu X, Xu B, Chen Z, Li T. pH and Reduction Dual-Responsive Bi-Drugs Conjugated Dextran Assemblies for Combination Chemotherapy and In Vitro Evaluation. Polymers (Basel) 2021;13:1515. [PMID: 34066882 DOI: 10.3390/polym13091515] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
23 Flynn J, Durack E, Collins MN, Hudson SP. Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J Mater Chem B 2020;8:4029-38. [PMID: 32195520 DOI: 10.1039/d0tb00169d] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 26.0] [Reference Citation Analysis]
24 Chen D, Zhou X, Chang L, Wang Y, Li W, Qin J. Hemostatic Self-Healing Hydrogel with Excellent Biocompatibility Composed of Polyphosphate-Conjugated Functional PNIPAM-Bearing Acylhydrazide. Biomacromolecules 2021;22:2272-83. [PMID: 33905651 DOI: 10.1021/acs.biomac.1c00349] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
25 Cui H, Wang Q, Zhang Y, Barboiu M, Zhang Y, Chen J. Double-Network Heparin Dynamic Hydrogels: Dynagels as Anti-bacterial 3D Cell Culture Scaffolds. Chemistry 2021;27:7080-4. [PMID: 33769604 DOI: 10.1002/chem.202005376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Lai WF. Development of Hydrogels with Self-Healing Properties for Delivery of Bioactive Agents. Mol Pharm 2021;18:1833-41. [PMID: 33818107 DOI: 10.1021/acs.molpharmaceut.0c00874] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 24.0] [Reference Citation Analysis]
27 Yeo YH, Park WH. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels. Carbohydrate Polymers 2021;258:117705. [DOI: 10.1016/j.carbpol.2021.117705] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
28 Nisar S, Pandit AH, Nadeem M, Pandit AH, Rizvi MMA, Rattan S. γ-Radiation induced L-glutamic acid grafted highly porous, pH-responsive chitosan hydrogel beads: A smart and biocompatible vehicle for controlled anti-cancer drug delivery. Int J Biol Macromol 2021;182:37-50. [PMID: 33775765 DOI: 10.1016/j.ijbiomac.2021.03.134] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
29 Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? Adv NanoBio Res 2021;1:2000066. [DOI: 10.1002/anbr.202000066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
30 Qin J, Zhu Y, Zheng D, Zhao Q. pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery. Bio-des Manuf 2021;4:612-26. [DOI: 10.1007/s42242-020-00105-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Kandar CC, Hasnain MS, Nayak AK. Natural polymers as useful pharmaceutical excipients. Advances and Challenges in Pharmaceutical Technology 2021. [DOI: 10.1016/b978-0-12-820043-8.00012-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Rizzo F, Kehr NS. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv Healthc Mater 2021;10:e2001341. [PMID: 33073515 DOI: 10.1002/adhm.202001341] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 64.0] [Reference Citation Analysis]
33 Muir VG, Burdick JA. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem Rev 2021;121:10908-49. [DOI: 10.1021/acs.chemrev.0c00923] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 28.5] [Reference Citation Analysis]
34 Pandit AH, Mazumdar N, Imtiyaz K, Alam Rizvi MM, Ahmad S. Self-Healing and Injectable Hydrogels for Anticancer Drug Delivery: A Study with Multialdehyde Gum Arabic and Succinic Anhydride Chitosan. ACS Appl Bio Mater 2020;3:8460-70. [PMID: 35019617 DOI: 10.1021/acsabm.0c00835] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
35 Tong Z, Jin L, Oliveira JM, Reis RL, Zhong Q, Mao Z, Gao C. Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioact Mater 2021;6:1375-87. [PMID: 33210030 DOI: 10.1016/j.bioactmat.2020.10.029] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 23.5] [Reference Citation Analysis]
36 Su T, Zhao W, Wu L, Dong W, Qi X. Facile fabrication of functional hydrogels consisting of pullulan and polydopamine fibers for drug delivery. International Journal of Biological Macromolecules 2020;163:366-74. [DOI: 10.1016/j.ijbiomac.2020.06.283] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
37 Ren P, Wang F, Bernaerts KV, Fu Y, Hu W, Zhou N, Dai J, Liang M, Zhang T. Self-Assembled Supramolecular Hybrid Hydrogels Based on Host–Guest Interaction: Formation and Application in 3D Cell Culture. ACS Appl Bio Mater 2020;3:6768-78. [DOI: 10.1021/acsabm.0c00711] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
38 Sengupta P, Agrawal V, Prasad BLV. Development of a Smart Scaffold for Sequential Cancer Chemotherapy and Tissue Engineering. ACS Omega 2020;5:20724-33. [PMID: 32875205 DOI: 10.1021/acsomega.9b03694] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Simpson LW, Szeto GL, Boukari H, Good TA, Leach JB. Impact of Four Common Hydrogels on Amyloid-β (Aβ) Aggregation and Cytotoxicity: Implications for 3D Models of Alzheimer's Disease. ACS Omega 2020;5:20250-60. [PMID: 32832778 DOI: 10.1021/acsomega.0c02046] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
40 Fan L, Ge X, Qian Y, Wei M, Zhang Z, Yuan WE, Ouyang Y. Advances in Synthesis and Applications of Self-Healing Hydrogels. Front Bioeng Biotechnol 2020;8:654. [PMID: 32793562 DOI: 10.3389/fbioe.2020.00654] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
41 Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020;59:15342-77. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Cited by in Crossref: 127] [Cited by in F6Publishing: 131] [Article Influence: 63.5] [Reference Citation Analysis]
42 Vázquez‐gonzález M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem 2020;132:15458-96. [DOI: 10.1002/ange.201907670] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
43 Uman S, Dhand A, Burdick JA. Recent advances in shear‐thinning and self‐healing hydrogels for biomedical applications. J Appl Polym Sci 2020;137:48668. [DOI: 10.1002/app.48668] [Cited by in Crossref: 97] [Cited by in F6Publishing: 100] [Article Influence: 48.5] [Reference Citation Analysis]
44 Lim JYC, Goh SS, Loh XJ. Bottom-Up Engineering of Responsive Hydrogel Materials for Molecular Detection and Biosensing. ACS Materials Lett 2020;2:918-50. [DOI: 10.1021/acsmaterialslett.0c00204] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 12.5] [Reference Citation Analysis]
45 Wu N, Schultz KM. Microrheological characterization of covalent adaptable hydrogel degradation in response to temporal pH changes that mimic the gastrointestinal tract. Soft Matter 2020;16:6253-8. [PMID: 32500893 DOI: 10.1039/d0sm00630k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
46 Qi X, Su T, Zhang M, Tong X, Pan W, Zeng Q, Shen J. Sustainable, flexible and biocompatible hydrogels derived from microbial polysaccharides with tailorable structures for tissue engineering. Carbohydrate Polymers 2020;237:116160. [DOI: 10.1016/j.carbpol.2020.116160] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
47 Kilic R, Sanyal A. Self-Healing Hydrogels Based on Reversible Covalent Linkages: A Survey of Dynamic Chemical Bonds in Network Formation. In: Creton C, Okay O, editors. Self-Healing and Self-Recovering Hydrogels. Cham: Springer International Publishing; 2020. pp. 243-94. [DOI: 10.1007/12_2019_59] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
48 Yang Z, Li H, Zhang L, Lai X, Zeng X. Highly stretchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor. J Colloid Interface Sci 2020;570:1-10. [PMID: 32126341 DOI: 10.1016/j.jcis.2020.02.107] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 20.5] [Reference Citation Analysis]
49 Wang C, Zhao N, Yuan W. NIR/Thermoresponsive Injectable Self-Healing Hydrogels Containing Polydopamine Nanoparticles for Efficient Synergistic Cancer Thermochemotherapy. ACS Appl Mater Interfaces 2020;12:9118-31. [PMID: 32009384 DOI: 10.1021/acsami.9b23536] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 20.0] [Reference Citation Analysis]
50 Zhang R, Tao Y, Xu Q, Liu N, Chen P, Zhou Y, Bai Z. Rheological and ion-conductive properties of injectable and self-healing hydrogels based on xanthan gum and silk fibroin. International Journal of Biological Macromolecules 2020;144:473-82. [DOI: 10.1016/j.ijbiomac.2019.12.132] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
51 Hussain I, Fu G. Self-healing hydrogels. Self-Healing Polymer-Based Systems 2020. [DOI: 10.1016/b978-0-12-818450-9.00013-1] [Reference Citation Analysis]
52 Nayak AK, Hasnain MS, Pal K, Banerjee I, Pal D. Gum-based hydrogels in drug delivery. Biopolymer-Based Formulations 2020. [DOI: 10.1016/b978-0-12-816897-4.00025-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
53 Sharma PK, Halder M, Srivastava U, Singh Y. Antibacterial PEG-Chitosan Hydrogels for Controlled Antibiotic/Protein Delivery. ACS Appl Bio Mater 2019;2:5313-22. [DOI: 10.1021/acsabm.9b00570] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 10.7] [Reference Citation Analysis]
54 Lim J, Lin Q, Xue K, Loh X. Recent advances in supramolecular hydrogels for biomedical applications. Materials Today Advances 2019;3:100021. [DOI: 10.1016/j.mtadv.2019.100021] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 18.0] [Reference Citation Analysis]
55 Li J, Zhou C, Luo C, Qian B, Liu S, Zeng Y, Hou J, Deng B, Sun Y, Yang J, Yuan Q, Zhong A, Wang J, Sun J, Wang Z. N-acetyl cysteine-loaded graphene oxide-collagen hybrid membrane for scarless wound healing. Theranostics 2019;9:5839-53. [PMID: 31534523 DOI: 10.7150/thno.34480] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
56 Chen X, Fan M, Tan H, Ren B, Yuan G, Jia Y, Li J, Xiong D, Xing X, Niu X, Hu X. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Materials Science and Engineering: C 2019;101:619-29. [DOI: 10.1016/j.msec.2019.04.012] [Cited by in Crossref: 91] [Cited by in F6Publishing: 93] [Article Influence: 30.3] [Reference Citation Analysis]
57 Simpson LW, Szeto GL, Boukari H, Good TA, Leach JB. Impact of four common hydrogels on amyloid-β (Aβ) aggregation and cytotoxicity: Implications for 3D models of Alzheimer’s disease.. [DOI: 10.1101/711770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
58 Zhang Z, Liow SS, Xue K, Zhang X, Li Z, Loh XJ. Autonomous Chitosan-Based Self-Healing Hydrogel Formed through Noncovalent Interactions. ACS Appl Polym Mater 2019;1:1769-77. [DOI: 10.1021/acsapm.9b00317] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
59 Sharma PK, Singh Y. Glyoxylic Hydrazone Linkage-Based PEG Hydrogels for Covalent Entrapment and Controlled Delivery of Doxorubicin. Biomacromolecules 2019;20:2174-84. [DOI: 10.1021/acs.biomac.9b00020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
60 Zhao H, An H, Xi B, Yang Y, Qin J, Wang Y, He Y, Wang X. Self-Healing Hydrogels with both LCST and UCST through Cross-Linking Induced Thermo-Response. Polymers (Basel) 2019;11:E490. [PMID: 30960473 DOI: 10.3390/polym11030490] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
61 Ren J, Xuan H, Ge L. Double network self-healing chitosan/dialdehyde starch-polyvinyl alcohol film for gas separation. Applied Surface Science 2019;469:213-9. [DOI: 10.1016/j.apsusc.2018.11.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
62 Teng L, Chen Y, Jia Y, Ren L. Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. J Mater Chem B 2019;7:6705-36. [DOI: 10.1039/c9tb01698h] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
63 Dai S, Wang S, Dong X, Xu X, Cao X, Chen Y, Zhou X, Ding J, Yuan N. A transparent, tough self-healing hydrogel based on a dual physically and chemically triple crosslinked network. J Mater Chem C 2019;7:14581-7. [DOI: 10.1039/c9tc02697e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]