BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Maiti C, Parida S, Kayal S, Maiti S, Mandal M, Dhara D. Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells. ACS Appl Mater Interfaces 2018;10:5318-30. [PMID: 29355017 DOI: 10.1021/acsami.7b18245] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 11.4] [Reference Citation Analysis]
Number Citing Articles
1 Wu J, Qi C, Xu T, Zhang Q, Liu F, Zhao H, Dong J, Liu X. Mixed Nanoscale Liposomes Co-Encapsulating Curcumin and Berberine Inhibit Activated Hepatic Stellate Cell-Induced Drug Resistance and Tumor Metastasis. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c04753] [Reference Citation Analysis]
2 Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. Journal of Drug Delivery Science and Technology 2022;77:103886. [DOI: 10.1016/j.jddst.2022.103886] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai H, Wu S. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. Biomaterials Advances 2022;139:213015. [DOI: 10.1016/j.bioadv.2022.213015] [Reference Citation Analysis]
4 Patra D, Kumar S, Kumar P, Chakraborty I, Basheer B, Shunmugam R. Iron(III) Coordinated Theranostic Polyprodrug with Sequential Receptor-Mitochondria Dual Targeting and T1-Weighted Magnetic Resonance Imaging Potency for Effective and Precise Chemotherapy. Biomacromolecules 2022. [PMID: 35767830 DOI: 10.1021/acs.biomac.2c00302] [Reference Citation Analysis]
5 Niu Y, Lu Y. Construction of pH ‐responsive core crosslinked micelles via thiol‐yne click reaction. J of Applied Polymer Sci. [DOI: 10.1002/app.52753] [Reference Citation Analysis]
6 Zhang C, Zhou X, Zhang H, Han X, Li B, Yang R, Zhou X. Recent Progress of Novel Nanotechnology Challenging the Multidrug Resistance of Cancer. Front Pharmacol 2022;13:776895. [DOI: 10.3389/fphar.2022.776895] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
7 Liu Y, Wen N, Li K, Li M, Qian S, Li S, Jiang T, Wang T, Wu Y, Liu Z. Photolytic Removal of Red Blood Cell Membranes Camouflaged on Nanoparticles for Enhanced Cellular Uptake and Combined Chemo-Photodynamic Inhibition of Cancer Cells. Mol Pharm 2022. [PMID: 35148115 DOI: 10.1021/acs.molpharmaceut.1c00720] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Wu P, Gao J, Prasad P, Dutta K, Kanjilal P, Thayumanavan S. Influence of Polymer Structure and Architecture on Drug Loading and Redox-Triggered Release. Biomacromolecules 2022;23:339-48. [PMID: 34890192 DOI: 10.1021/acs.biomac.1c01295] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
9 Abuwatfa WH, Alsawaftah NM, Husseini GA. Block copolymer micelles as long-circulating drug delivery vehicles. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00023-9] [Reference Citation Analysis]
10 Amjad MW. Polymeric micelles for drug codelivery. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00005-7] [Reference Citation Analysis]
11 Jimaja S, Varlas S, Foster JC, Taton D, Dove AP, O'reilly RK. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl isocyanide)s. Polym Chem . [DOI: 10.1039/d2py00397j] [Reference Citation Analysis]
12 Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional Polymeric Nanogels for Biomedical Applications. Gels 2021;7:228. [PMID: 34842728 DOI: 10.3390/gels7040228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Gebrie HT, Addisu KD, Darge HF, Mekonnen TW, kottackal DT, Tsai H. Development of thermo/redox-responsive diselenide linked methoxy poly (ethylene glycol)-block-poly(ε-caprolactone-co-p-dioxanone) hydrogel for localized control drug release. J Polym Res 2021;28. [DOI: 10.1007/s10965-021-02776-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Biswas G, Jena BC, Samanta P, Mandal M, Dhara D. Synthesis, self-assembly and drug release study of a new dual-responsive biocompatible block copolymer containing phenylalanine derivative. Journal of Macromolecular Science, Part A 2021;58:792-803. [DOI: 10.1080/10601325.2021.1947748] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Li Z, Wang F, Li Y, Wang X, Lu Q, Wang D, Qi C, Li C, Li Z, Lian B, Tian G, Gao Z, Zhang B, Wu J. Combined anti-hepatocellular carcinoma therapy inhibit drug-resistance and metastasis via targeting "substance P-hepatic stellate cells-hepatocellular carcinoma" axis. Biomaterials 2021;276:121003. [PMID: 34273686 DOI: 10.1016/j.biomaterials.2021.121003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
16 Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021;166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
17 Sarkar P, Ghosh S, Saha R, Sarkar K. RAFT polymerization mediated core-shell supramolecular assembly of PEGMA-co-stearic acid block co-polymer for efficient anticancer drug delivery. RSC Adv 2021;11:16913-23. [PMID: 35479720 DOI: 10.1039/d1ra01660a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Wei X, Song M, Li W, Huang J, Yang G, Wang Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Theranostics 2021;11:6334-54. [PMID: 33995661 DOI: 10.7150/thno.59342] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
19 Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
20 Liang X, Wang Y, Shi H, Dong M, Han H, Li Q. Nucleolin-Targeting AS1411 Aptamer-Modified Micelle for the Co-Delivery of Doxorubicin and miR-519c to Improve the Therapeutic Efficacy in Hepatocellular Carcinoma Treatment. Int J Nanomedicine 2021;16:2569-84. [PMID: 33833512 DOI: 10.2147/IJN.S304526] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Paliwal R, Paliwal SR, Kenwat R. Nanomedicine-based multidrug resistance reversal strategies in cancer therapy. Nano Drug Delivery Strategies for the Treatment of Cancers 2021. [DOI: 10.1016/b978-0-12-819793-6.00013-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. View 2021;2:20200042. [DOI: 10.1002/viw.20200042] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
23 Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. Journal of Macromolecular Science, Part A 2021;58:269-84. [DOI: 10.1080/10601325.2020.1842766] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
24 Sui J, He M, Yang Y, Ma M, Guo Z, Zhao M, Liang J, Sun Y, Fan Y, Zhang X. Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization. ACS Appl Mater Interfaces 2020;12:51198-211. [PMID: 33147005 DOI: 10.1021/acsami.0c13986] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
25 Poddar P, Maity P, Maiti S, Sahoo S, Dhara S, Dhara D. Synthesis of a new triple-responsive biocompatible block copolymer: Self-assembled nanoparticles as potent anticancer drug delivery vehicle. Reactive and Functional Polymers 2020;154:104679. [DOI: 10.1016/j.reactfunctpolym.2020.104679] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Zheng T, Wang W, Ashley J, Zhang M, Feng X, Shen J, Sun Y. Self-Assembly Protein Superstructures as a Powerful Chemodynamic Therapy Nanoagent for Glioblastoma Treatment. Nanomicro Lett 2020;12:151. [PMID: 34138164 DOI: 10.1007/s40820-020-00490-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
27 Li Q, Hou W, Li M, Ye H, Li H, Wang Z. Ultrasound Combined with Core Cross-Linked Nanosystem for Enhancing Penetration of Doxorubicin Prodrug/Beta-Lapachone into Tumors. Int J Nanomedicine 2020;15:4825-45. [PMID: 32753868 DOI: 10.2147/IJN.S251277] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
28 Li Y, Xu X. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance. Journal of Controlled Release 2020;323:483-501. [DOI: 10.1016/j.jconrel.2020.05.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
29 Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020;12:E580. [PMID: 32585885 DOI: 10.3390/pharmaceutics12060580] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
30 Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020;12:E1397. [PMID: 32580366 DOI: 10.3390/polym12061397] [Cited by in Crossref: 142] [Cited by in F6Publishing: 147] [Article Influence: 47.3] [Reference Citation Analysis]
31 Fraix A, Conte C, Gazzano E, Riganti C, Quaglia F, Sortino S. Overcoming Doxorubicin Resistance with Lipid-Polymer Hybrid Nanoparticles Photoreleasing Nitric Oxide. Mol Pharm 2020;17:2135-44. [PMID: 32286080 DOI: 10.1021/acs.molpharmaceut.0c00290] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
32 Qin X, Li Y. Strategies To Design and Synthesize Polymer‐Based Stimuli‐Responsive Drug‐Delivery Nanosystems. ChemBioChem 2020;21:1236-53. [DOI: 10.1002/cbic.201900550] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
33 Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm J 2020;28:255-65. [PMID: 32194326 DOI: 10.1016/j.jsps.2020.01.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 18.3] [Reference Citation Analysis]
34 Huang Y, Yan J, Peng S, Tang Z, Tan C, Ling J, Lin W, Lin X, Zu X, Yi G. pH/Reduction Dual-Stimuli-Responsive Cross-Linked Micelles Based on Multi-Functional Amphiphilic Star Copolymer: Synthesis and Controlled Anti-Cancer Drug Release. Polymers (Basel) 2020;12:E82. [PMID: 31947729 DOI: 10.3390/polym12010082] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
35 Li L, Liu T, Liao J, Zhang Z, Song D, Wang G. Dual-responsive TPGS crosslinked nanocarriers to overcome multidrug resistance. J Mater Chem B 2020;8:8383-94. [DOI: 10.1039/d0tb01140a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
36 Bedoya DA, Figueroa FN, Macchione MA, Strumia MC. Stimuli-Responsive Polymeric Systems for Smart Drug Delivery. Advanced Biopolymeric Systems for Drug Delivery 2020. [DOI: 10.1007/978-3-030-46923-8_5] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
37 Tanaka R, Arai K, Matsuno J, Soejima M, Lee JH, Takahashi R, Sakurai K, Fujii S. Furry nanoparticles: synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles and their robust stability in vivo. Polym Chem 2020;11:4408-16. [DOI: 10.1039/d0py00610f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
38 Zhang Z, Yu M, An T, Yang J, Zou M, Zhai Y, Sun W, Cheng G. Tumor Microenvironment Stimuli-Responsive Polymeric Prodrug Micelles for Improved Cancer Therapy. Pharm Res 2020;37. [DOI: 10.1007/s11095-019-2709-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
39 Samanta P, Kapat K, Maiti S, Biswas G, Dhara S, Dhara D. pH-labile and photochemically cross-linkable polymer vesicles from coumarin based random copolymer for cancer therapy. Journal of Colloid and Interface Science 2019;555:132-44. [DOI: 10.1016/j.jcis.2019.07.069] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
40 Pieper S, Onafuye H, Mulac D, Cinatl J Jr, Wass MN, Michaelis M, Langer K. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. Beilstein J Nanotechnol 2019;10:2062-72. [PMID: 31728254 DOI: 10.3762/bjnano.10.201] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
41 Wang XF, Ren J, He HQ, Liang L, Xie X, Li ZX, Zhao JG, Yu JM. Self-assembled nanoparticles of reduction-sensitive poly (lactic-co-glycolic acid)-conjugated chondroitin sulfate A for doxorubicin delivery: preparation, characterization and evaluation. Pharm Dev Technol 2019;24:794-802. [PMID: 30907676 DOI: 10.1080/10837450.2019.1599914] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
42 Ravanfar R, Abbaspourrad A. l -Histidine Crystals as Efficient Vehicles to Deliver Hydrophobic Molecules. ACS Appl Mater Interfaces 2019;11:39376-84. [DOI: 10.1021/acsami.9b14239] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
43 Lin W, Xue Z, Wen L, Li Y, Liang Z, Xu J, Yang C, Gu Y, Zhang J, Zu X, Luo H, Yi G, Zhang L. Mesoscopic simulations of drug-loaded diselenide crosslinked micelles: Stability, drug loading and release properties. Colloids and Surfaces B: Biointerfaces 2019;182:110313. [DOI: 10.1016/j.colsurfb.2019.06.043] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
44 Li Y, Chen M, Yao B, Lu X, Zhang X, He P, Vasilatos SN, Ren X, Bian W, Yao C. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrug-resistant breast cancer therapy. J Mater Chem B 2019;7:5814-24. [PMID: 31495855 DOI: 10.1039/c9tb00651f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
45 Zhuang W, Ma B, Hu J, Jiang J, Li G, Yang L, Wang Y. Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics. Theranostics 2019;9:6618-30. [PMID: 31588239 DOI: 10.7150/thno.33901] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
46 Onafuye H, Pieper S, Mulac D, Cinatl J Jr, Wass MN, Langer K, Michaelis M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J Nanotechnol 2019;10:1707-15. [PMID: 31501742 DOI: 10.3762/bjnano.10.166] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 7.5] [Reference Citation Analysis]
47 Birhan YS, Hailemeskel BZ, Mekonnen TW, Hanurry EY, Darge HF, Andrgie AT, Chou HY, Lai JY, Hsiue GH, Tsai HC. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. Int J Pharm 2019;567:118486. [PMID: 31260783 DOI: 10.1016/j.ijpharm.2019.118486] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
48 Onafuye H, Pieper S, Mulac D, Cinatl J, Wass MN, Langer K, Michaelis M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance.. [DOI: 10.1101/655662] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
49 He Y, Li H, Zheng X, Yuan M, Yang R, Yuan M, Yang C. Preparation, In Vivo and In Vitro Release of Polyethylene Glycol Monomethyl Ether-Polymandelic Acid Microspheres Loaded Panax Notoginseng Saponins. Molecules 2019;24:E2024. [PMID: 31137874 DOI: 10.3390/molecules24102024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
50 Wang F, Yuan Z, Mcmullen P, Li R, Zheng J, Xu Y, Xu M, He Q, Li B, Chen H. Near-Infrared-Light-Responsive Lipid Nanoparticles as an Intelligent Drug Release System for Cancer Therapy. Chem Mater 2019;31:3948-56. [DOI: 10.1021/acs.chemmater.9b00150] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
51 Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology 2019;47:1476-87. [DOI: 10.1080/21691401.2019.1601104] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 10.8] [Reference Citation Analysis]
52 Zhang Y, Chang J, Huang F, Yang L, Ren C, Ma L, Zhang W, Dong H, Liu J, Liu J. Acid-Triggered in Situ Aggregation of Gold Nanoparticles for Multimodal Tumor Imaging and Photothermal Therapy. ACS Biomater Sci Eng 2019;5:1589-601. [DOI: 10.1021/acsbiomaterials.8b01623] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
53 Biswas G, Jena BC, Sahoo S, Samanta P, Mandal M, Dhara D. A copper-free click reaction for the synthesis of redox-responsive water-soluble core cross-linked nanoparticles for drug delivery in cancer therapy. Green Chem 2019;21:5624-38. [DOI: 10.1039/c9gc01863h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
54 李 景. Research Progress of Stimuli-Sensitive Polymer Carriers for Anti-Tumor Drug Delivery. JAPC 2019;08:65-73. [DOI: 10.12677/japc.2019.84008] [Reference Citation Analysis]
55 Kumari L, Badwaik HR. Polysaccharide-based nanogels for drug and gene delivery. Polysaccharide Carriers for Drug Delivery 2019. [DOI: 10.1016/b978-0-08-102553-6.00018-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
56 He X, Cai K, Zhang Y, Lu Y, Guo Q, Zhang Y, Liu L, Ruan C, Chen Q, Chen X, Li C, Sun T, Cheng J, Jiang C. Dimeric Prodrug Self-Delivery Nanoparticles with Enhanced Drug Loading and Bioreduction Responsiveness for Targeted Cancer Therapy. ACS Appl Mater Interfaces 2018;10:39455-67. [PMID: 30362704 DOI: 10.1021/acsami.8b09730] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
57 Ma Y, Zhou H, Hu F, Pei Z, Xu Y, Shuai Q. Multifunctional nanogel engineering with redox-responsive and AIEgen features for the targeted delivery of doxorubicin hydrochloride with enhanced antitumor efficiency and real-time intracellular imaging. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:S900-10. [DOI: 10.1080/21691401.2018.1518910] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
58 Pieper S, Onafuye H, Mulac D, Cinatl J, Wass MN, Michaelis M, Langer K. Incorporation of doxorubicin in different polymer nanoparticles and their anti-cancer activity.. [DOI: 10.1101/403923] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
59 Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur J Med Chem 2018;157:705-15. [PMID: 30138802 DOI: 10.1016/j.ejmech.2018.08.034] [Cited by in Crossref: 99] [Cited by in F6Publishing: 99] [Article Influence: 19.8] [Reference Citation Analysis]