BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peng J, Dong M, Ran B, Li W, Hao Y, Yang Q, Tan L, Shi K, Qian Z. "One-for-All"-Type, Biodegradable Prussian Blue/Manganese Dioxide Hybrid Nanocrystal for Trimodal Imaging-Guided Photothermal Therapy and Oxygen Regulation of Breast Cancer. ACS Appl Mater Interfaces 2017;9:13875-86. [PMID: 28374581 DOI: 10.1021/acsami.7b01365] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 13.3] [Reference Citation Analysis]
Number Citing Articles
1 Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coordination Chemistry Reviews 2023;480:215027. [DOI: 10.1016/j.ccr.2023.215027] [Reference Citation Analysis]
2 Chen S, Fan J, Xiao F, Qin Y, Long Y, Yuan L, Liu B. Erythrocyte membrane-camouflaged Prussian blue nanocomplexes for combinational therapy of triple-negative breast cancer. J Mater Chem B 2023;11:2219-33. [PMID: 36790882 DOI: 10.1039/d2tb02289c] [Reference Citation Analysis]
3 Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023;192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Reference Citation Analysis]
4 Chen L, Li X, Xiong M, Zhao Y, Liu S, Li C, Wang K. Development of novel nanoporphyrin biomaterials for NIR-II activated photothermal therapy against tumor in vivo. Materials & Design 2022. [DOI: 10.1016/j.matdes.2022.111532] [Reference Citation Analysis]
5 Wang Y, Liang Z, Liang Z, Lv W, Chen M, Zhao Y. Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. Journal of Controlled Release 2022;351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Reference Citation Analysis]
6 Li Z, Zhang S, Liu M, Zhong T, Li H, Wang J, Zhao H, Tian Y, Wang H, Wang J, Xu M, Wang S, Zhang X. Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex In Vitro and In Vivo. Mol Pharm 2022. [PMID: 36223494 DOI: 10.1021/acs.molpharmaceut.2c00553] [Reference Citation Analysis]
7 Xu D, Wu L, Yao H, Zhao L. Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. Small 2022;:e2203400. [PMID: 35971168 DOI: 10.1002/smll.202203400] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Hegedűs N, Forgách L, Kiss B, Varga Z, Jezsó B, Horváth I, Kovács N, Hajdrik P, Padmanabhan P, Gulyás B, Szigeti K, Máthé D. Synthesis and preclinical application of a Prussian blue-based dual fluorescent and magnetic contrast agent (CA). PLoS ONE 2022;17:e0264554. [DOI: 10.1371/journal.pone.0264554] [Reference Citation Analysis]
9 Xiang X, Shi D, Gao J. The Advances and Biomedical Applications of Imageable Nanomaterials. Front Bioeng Biotechnol 2022;10:914105. [DOI: 10.3389/fbioe.2022.914105] [Reference Citation Analysis]
10 Yang Y, Hu D, Lu Y, Chu B, He X, Chen Y, Xiao Y, Yang C, Zhou K, Yuan L, Qian Z. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharmaceutica Sinica B 2022;12:2710-30. [DOI: 10.1016/j.apsb.2021.08.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
11 Zheng C, Zhang X, Wang L, Zhou X, Yang X, Zhang Z, Huang X. Versatile cobalt-glycerate nanoplatform for MR-guided neoadjuvant photo-therapy of oral squamous cell carcinoma. Chemical Engineering Journal 2022;437:135476. [DOI: 10.1016/j.cej.2022.135476] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle J, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coordination Chemistry Reviews 2022;461:214497. [DOI: 10.1016/j.ccr.2022.214497] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Yang Y, Yang T, Chen F, Zhang C, Yin B, Yin X, Han L, Xie Q, Zhang XB, Song G. Degradable Magnetic Nanoplatform with Hydroxide Ions Triggered Photoacoustic, MR Imaging, and Photothermal Conversion for Precise Cancer Theranostic. Nano Lett 2022. [PMID: 35380847 DOI: 10.1021/acs.nanolett.1c04804] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
14 Hashemzadeh S, Akbari ME, Astani SA, Hashemzadeh J, Hafez AA. Engineering Effects on Efficacy and Toxicity of Manganese Oxide Nanostructures, as a Contrast Agent, in Magnetic Resonance Imaging: A Review. NANO 2022;17. [DOI: 10.1142/s1793292022300031] [Reference Citation Analysis]
15 Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. Adv Mater 2021;33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
16 Aminolroayaei F, Shahbazi-Gahrouei D, Shahbazi-Gahrouei S, Rasouli N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol 2021;15:247-56. [PMID: 34694670 DOI: 10.1049/nbt2.12021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Zhao Y, Liu Y, Wang Y, Xu B, Zhang S, Liu J, Zhang T, Jin L, Song S, Zhang H. Rapidly clearable MnCo2O4@PAA as novel nanotheranostic agents for T1/T2 bimodal MRI imaging-guided photothermal therapy. Nanoscale 2021;13:16251-7. [PMID: 34549746 DOI: 10.1039/d1nr04067g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Munjal T, Dutta S. Biocompatible nanoreactors of catalase and nanozymes for anticancer therapeutics. Nano Select 2021;2:1849-73. [DOI: 10.1002/nano.202100040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zheng Q, Liu X, Zheng Y, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. The recent progress on metal-organic frameworks for phototherapy. Chem Soc Rev 2021;50:5086-125. [PMID: 33634817 DOI: 10.1039/d1cs00056j] [Cited by in Crossref: 107] [Cited by in F6Publishing: 114] [Article Influence: 53.5] [Reference Citation Analysis]
20 Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021;50:8669-742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Cited by in Crossref: 92] [Cited by in F6Publishing: 111] [Article Influence: 46.0] [Reference Citation Analysis]
21 Miao Y, Feng Y, Bai J, Liu Z, Zhao X. Optimized mesoporous silica nanoparticle-based drug delivery system with removable manganese oxide gatekeeper for controlled delivery of doxorubicin. J Colloid Interface Sci 2021;592:227-36. [PMID: 33662827 DOI: 10.1016/j.jcis.2021.02.054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
22 Estelrich J, Busquets MA. Prussian Blue: A Nanozyme with Versatile Catalytic Properties. Int J Mol Sci 2021;22:5993. [PMID: 34206067 DOI: 10.3390/ijms22115993] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
23 Zhu D, Lyu M, Jiang W, Suo M, Huang Q, Li K. A biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy. J Mater Chem B 2020;8:5312-9. [PMID: 32453333 DOI: 10.1039/d0tb00676a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
24 Hu Q, Zhang S, Zhu J, Yin L, Liu S, Huang X, Ke G. The Promotional Effect of Hollow MnO2 with Brucea Javanica Oil Emulsion (BJOE) on Endometrial Cancer Apoptosis. Biomed Res Int 2021;2021:6631533. [PMID: 33816622 DOI: 10.1155/2021/6631533] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zheng BD, Huang ZL, Lv LL, Lan WL, Hu JQ, Li X, Zheng BY, Ke MR, Huang JD. A pH-sensitive nanoagent self-assembled from a highly negatively-charged phthalocyanine with excellent biosafety for photothermal therapy. J Mater Chem B 2021;9:2845-53. [PMID: 33704321 DOI: 10.1039/d0tb02981e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
26 Rosenkrans ZT, Ferreira CA, Ni D, Cai W. Internally Responsive Nanomaterials for Activatable Multimodal Imaging of Cancer. Adv Healthc Mater 2021;10:e2000690. [PMID: 32691969 DOI: 10.1002/adhm.202000690] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
27 Lin X, Wang X, Gu Q, Lei D, Liu X, Yao C. Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomed Mater 2021. [PMID: 33601351 DOI: 10.1088/1748-605X/abe7b3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
28 Gu D, Liu Z, Wu H, An P, Zhi X, Yin Y, Liu W, Sun B. Dual catalytic cascaded nanoplatform for photo/chemodynamic/starvation synergistic therapy. Colloids Surf B Biointerfaces 2021;199:111538. [PMID: 33383548 DOI: 10.1016/j.colsurfb.2020.111538] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
29 Gao X, Wang Q, Cheng C, Lin S, Lin T, Liu C, Han X. The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. Sensors (Basel) 2020;20:E6905. [PMID: 33287186 DOI: 10.3390/s20236905] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
30 Singh N. Antioxidant metal oxide nanozymes: role in cellular redox homeostasis and therapeutics. Pure and Applied Chemistry 2021;93:187-205. [DOI: 10.1515/pac-2020-0802] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
31 Liu X, Zhou Y, Xie W, Liu S, Zhao Q, Huang W. Construction of Smart Manganese Dioxide‐Based All‐in‐One Nanoplatform for Cancer Diagnosis and Therapy. Small Methods 2020;4:2000566. [DOI: 10.1002/smtd.202000566] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
32 Wang X, Cheng L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coordination Chemistry Reviews 2020;419:213393. [DOI: 10.1016/j.ccr.2020.213393] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
33 Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020;327:316-49. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Cited by in Crossref: 84] [Cited by in F6Publishing: 67] [Article Influence: 28.0] [Reference Citation Analysis]
34 Cheng M, Yu Y, Huang W, Fang M, Chen Y, Wang C, Cai W, Zhang S, Wang W, Yan W. Monodisperse Hollow MnO2 with Biodegradability for Efficient Targeted Drug Delivery. ACS Biomater Sci Eng 2020;6:4985-92. [PMID: 33455291 DOI: 10.1021/acsbiomaterials.0c00507] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
35 Yang Q, Xiao Y, Liu Q, Xu X, Peng J. Carrier-Free Small-Molecule Drug Nanoassembly Elicits Chemoimmunotherapy via Co-inhibition of PD-L1/mTOR. ACS Appl Bio Mater 2020;3:4543-55. [PMID: 35025453 DOI: 10.1021/acsabm.0c00470] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
36 Xie W, Guo Z, Gao Q, Wang D, Liang K, Gu Z, Zhao LY. Manganese-Doped Layered Double Hydroxide: A Biodegradable Theranostic Nanoplatform with Tumor Microenvironment Response for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Appl Bio Mater 2020;3:5845-55. [DOI: 10.1021/acsabm.0c00564] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
37 Raja IS, Kang MS, Kim KS, Jung YJ, Han DW. Two-Dimensional Theranostic Nanomaterials in Cancer Treatment: State of the Art and Perspectives. Cancers (Basel) 2020;12:E1657. [PMID: 32580528 DOI: 10.3390/cancers12061657] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
38 Hsieh TE, Lin SJ, Chen LC, Chen CC, Lai PL, Huang CC. Optimizing an Injectable Composite Oxygen-Generating System for Relieving Tissue Hypoxia. Front Bioeng Biotechnol 2020;8:511. [PMID: 32528945 DOI: 10.3389/fbioe.2020.00511] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
39 Shi C, Li Y, Gu N. Iron-Based Nanozymes in Disease Diagnosis and Treatment. Chembiochem 2020;21:2722-32. [PMID: 32315111 DOI: 10.1002/cbic.202000094] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
40 Odda AH, Li H, Kumar N, Ullah N, Khan MI, Wang G, Liang K, Liu T, Pan YY, Xu AW. Polydopamine Coated PB-MnO2 Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy. Bioconjug Chem 2020;31:1474-85. [PMID: 32286806 DOI: 10.1021/acs.bioconjchem.0c00165] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
41 Sahar S, Zeb A, Ling C, Raja A, Wang G, Ullah N, Lin XM, Xu AW. A Hybrid VOx Incorporated Hexacyanoferrate Nanostructured Hydrogel as a Multienzyme Mimetic via Cascade Reactions. ACS Nano 2020;14:3017-31. [PMID: 32105066 DOI: 10.1021/acsnano.9b07886] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
42 Jain P, Bhagat S, Tunki L, Jangid AK, Singh S, Pooja D, Kulhari H. Serotonin–Stearic Acid Bioconjugate-Coated Completely Biodegradable Mn 3 O 4 Nanocuboids for Hepatocellular Carcinoma Targeting. ACS Appl Mater Interfaces 2020;12:10170-82. [DOI: 10.1021/acsami.0c00331] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
43 Wang S, Liu X, Wang Y, Xu D, Liang C, Guo J, Ma X. Biocompatibility of artificial micro/nanomotors for use in biomedicine. Nanoscale 2019;11:14099-112. [PMID: 31214671 DOI: 10.1039/c9nr03393a] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 17.3] [Reference Citation Analysis]
44 Wang X, Tian Y, Liao X, Tang Y, Ni Q, Sun J, Zhao Y, Zhang J, Teng Z, Lu G. Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform. J Colloid Interface Sci 2020;565:483-93. [PMID: 31982715 DOI: 10.1016/j.jcis.2020.01.020] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
45 Zhang Z, Ji Y. Nanostructured manganese dioxide for anticancer applications: preparation, diagnosis, and therapy. Nanoscale 2020;12:17982-8003. [DOI: 10.1039/d0nr04067c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
46 Shou P, Yu Z, Wu Y, Feng Q, Zhou B, Xing J, Liu C, Tu J, Akakuru OU, Ye Z, Zhang X, Lu Z, Zhang L, Wu A. Zn2+ Doped Ultrasmall Prussian Blue Nanotheranostic Agent for Breast Cancer Photothermal Therapy under MR Imaging Guidance. Adv Healthc Mater 2020;9:e1900948. [PMID: 31746549 DOI: 10.1002/adhm.201900948] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
47 Yuan X, Yin Y, Zan W, Sun X, Yang Q. Hybrid manganese dioxide-bovine serum albumin nanostructure incorporated with doxorubicin and IR780 for enhanced breast cancer chemo-photothermal therapy. Drug Deliv 2019;26:1254-64. [PMID: 31760842 DOI: 10.1080/10717544.2019.1693706] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
48 Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy. Int J Nanomedicine 2019;14:8321-44. [PMID: 31695370 DOI: 10.2147/IJN.S218085] [Cited by in Crossref: 75] [Cited by in F6Publishing: 81] [Article Influence: 18.8] [Reference Citation Analysis]
49 Wu M, Hou P, Dong L, Cai L, Chen Z, Zhao M, Li J. Manganese dioxide nanosheets: from preparation to biomedical applications. Int J Nanomedicine 2019;14:4781-800. [PMID: 31308658 DOI: 10.2147/IJN.S207666] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 11.5] [Reference Citation Analysis]
50 Yang Q, Peng J, Shi K, Xiao Y, Liu Q, Han R, Wei X, Qian Z. Rationally designed peptide-conjugated gold/platinum nanosystem with active tumor-targeting for enhancing tumor photothermal-immunotherapy. J Control Release 2019;308:29-43. [PMID: 31252039 DOI: 10.1016/j.jconrel.2019.06.031] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 15.8] [Reference Citation Analysis]
51 Jia Q, Su F, Li Z, Huang X, He L, Wang M, Zhang Z, Fang S, Zhou N. Tunable Hollow Bimetallic MnFe Prussian Blue Analogue as the Targeted pH-Responsive Delivery System for Anticancer Drugs. ACS Appl Bio Mater 2019;2:2143-54. [DOI: 10.1021/acsabm.9b00129] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
52 Girma WM, Dehvari K, Ling YC, Chang JY. Albumin-functionalized CuFeS2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy. Mater Sci Eng C Mater Biol Appl 2019;101:179-89. [PMID: 31029311 DOI: 10.1016/j.msec.2019.03.074] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
53 Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019;143:37-67. [PMID: 31276708 DOI: 10.1016/j.addr.2019.06.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 16.3] [Reference Citation Analysis]
54 Chen X, Wang R, Liu D, Tian Y, Ye L. Prussian Blue Analogue Islands on BiOCl-Se Nanosheets for MR/CT Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Appl Bio Mater 2019;2:1213-24. [DOI: 10.1021/acsabm.8b00786] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
55 Dong X, Liang J, Yang A, Qian Z, Kong D, Lv F. A Visible Codelivery Nanovaccine of Antigen and Adjuvant with Self-Carrier for Cancer Immunotherapy. ACS Appl Mater Interfaces 2019;11:4876-88. [PMID: 30628437 DOI: 10.1021/acsami.8b20364] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 12.0] [Reference Citation Analysis]
56 Manoharan D, Li W, Yeh C. Advances in controlled gas-releasing nanomaterials for therapeutic applications. Nanoscale Horiz 2019;4:557-78. [DOI: 10.1039/c8nh00191j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
57 Wang P, Shi Y, Zhang S, Huang X, Zhang J, Zhang Y, Si W, Dong X. Hydrogen Peroxide Responsive Iron-Based Nanoplatform for Multimodal Imaging-Guided Cancer Therapy. Small 2019;15:e1803791. [PMID: 30569479 DOI: 10.1002/smll.201803791] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 8.6] [Reference Citation Analysis]
58 Wang Y, Song Y, Zhu G, Zhang D, Liu X. Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. Chinese Chemical Letters 2018;29:1685-8. [DOI: 10.1016/j.cclet.2017.12.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 8.4] [Reference Citation Analysis]
59 Qin Z, Li Y, Gu N. Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Adv Healthc Mater 2018;7:e1800347. [PMID: 29974662 DOI: 10.1002/adhm.201800347] [Cited by in Crossref: 108] [Cited by in F6Publishing: 115] [Article Influence: 21.6] [Reference Citation Analysis]
60 Li W, Peng J, Yang Q, Chen L, Zhang L, Chen X, Qian Z. α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer. Biomater Sci 2018;6:1201-16. [PMID: 29578215 DOI: 10.1039/c8bm00096d] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
61 Gautam M, Poudel K, Yong CS, Kim JO. Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment. Int J Pharm 2018;549:31-49. [PMID: 30053487 DOI: 10.1016/j.ijpharm.2018.07.055] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 10.4] [Reference Citation Analysis]
62 Xu J, Han W, Yang P, Jia T, Dong S, Bi H, Gulzar A, Yang D, Gai S, He F, Lin J, Li C. Tumor Microenvironment-Responsive Mesoporous MnO 2 -Coated Upconversion Nanoplatform for Self-Enhanced Tumor Theranostics. Adv Funct Mater 2018;28:1803804. [DOI: 10.1002/adfm.201803804] [Cited by in Crossref: 202] [Cited by in F6Publishing: 208] [Article Influence: 40.4] [Reference Citation Analysis]
63 Weng Y, Guan S, Lu H, Meng X, Kaassis AY, Ren X, Qu X, Sun C, Xie Z, Zhou S. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy. Talanta 2018;184:50-7. [DOI: 10.1016/j.talanta.2018.02.093] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
64 Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials 2018;177:139-48. [DOI: 10.1016/j.biomaterials.2018.05.048] [Cited by in Crossref: 101] [Cited by in F6Publishing: 102] [Article Influence: 20.2] [Reference Citation Analysis]
65 Hao Y, Chen Y, Lei M, Zhang T, Cao Y, Peng J, Chen L, Qian Z. Near-Infrared Responsive PEGylated Gold Nanorod and Doxorubicin Loaded Dissolvable Hyaluronic Acid Microneedles for Human Epidermoid Cancer Therapy. Adv Therap 2018;1:1800008. [DOI: 10.1002/adtp.201800008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
66 Zhou B, Jiang B, Sun W, Wei F, He Y, Liang H, Shen X. Water-Dispersible Prussian Blue Hyaluronic Acid Nanocubes with Near-Infrared Photoinduced Singlet Oxygen Production and Photothermal Activities for Cancer Theranostics. ACS Appl Mater Interfaces 2018;10:18036-49. [DOI: 10.1021/acsami.8b01387] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 9.6] [Reference Citation Analysis]
67 Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z. Photosensitizer Micelles Together with IDO Inhibitor Enhance Cancer Photothermal Therapy and Immunotherapy. Adv Sci (Weinh) 2018;5:1700891. [PMID: 29876215 DOI: 10.1002/advs.201700891] [Cited by in Crossref: 209] [Cited by in F6Publishing: 212] [Article Influence: 41.8] [Reference Citation Analysis]
68 Bhujwalla ZM, Kakkad S, Chen Z, Jin J, Hapuarachchige S, Artemov D, Penet MF. Theranostics and metabolotheranostics for precision medicine in oncology. J Magn Reson 2018;291:141-51. [PMID: 29705040 DOI: 10.1016/j.jmr.2018.03.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
69 Yin Z, Chen D, Zou J, Shao J, Tang H, Xu H, Si W, Dong X. Tumor Microenvironment Responsive Oxygen-Self-Generating Nanoplatform for Dual-Imaging Guided Photodynamic and Photothermal Therapy. ChemistrySelect 2018;3:4366-73. [DOI: 10.1002/slct.201800498] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
70 Chen S, Jia Q, Zheng X, Wen Y, Liu W, Zhang H, Ge J, Wang P. PEGylated carbon dot/MnO2 nanohybrid: a new pH/H2O2-driven, turn-on cancer nanotheranostics. Sci China Mater 2018;61:1325-38. [DOI: 10.1007/s40843-018-9261-x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
71 Liu Z, Zhang S, Lin H, Zhao M, Yao H, Zhang L, Peng W, Chen Y. Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. Biomaterials 2018;155:54-63. [DOI: 10.1016/j.biomaterials.2017.11.015] [Cited by in Crossref: 132] [Cited by in F6Publishing: 125] [Article Influence: 26.4] [Reference Citation Analysis]
72 Pan J, Zhu X, Chen X, Zhao Y, Liu J. Gd 3+ -Doped MoSe 2 nanosheets used as a theranostic agent for bimodal imaging and highly efficient photothermal cancer therapy. Biomater Sci 2018;6:372-87. [DOI: 10.1039/c7bm00894e] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
73 Wang G, Qian K, Mei X. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1 & T2 -MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy. Nanoscale 2018;10:10467-78. [DOI: 10.1039/c8nr02429d] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 6.6] [Reference Citation Analysis]
74 Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? Nanoscale 2018;10:11719-31. [DOI: 10.1039/c8nr02796j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
75 Yang Q, Peng J, Xiao Y, Li W, Tan L, Xu X, Qian Z. Porous Au@Pt Nanoparticles: Therapeutic Platform for Tumor Chemo-Photothermal Co-Therapy and Alleviating Doxorubicin-Induced Oxidative Damage. ACS Appl Mater Interfaces 2018;10:150-64. [DOI: 10.1021/acsami.7b14705] [Cited by in Crossref: 87] [Cited by in F6Publishing: 89] [Article Influence: 14.5] [Reference Citation Analysis]
76 Peng J, Yang Q, Li W, Tan L, Xiao Y, Chen L, Hao Y, Qian Z. Erythrocyte-Membrane-Coated Prussian Blue/Manganese Dioxide Nanoparticles as H2O2-Responsive Oxygen Generators To Enhance Cancer Chemotherapy/Photothermal Therapy. ACS Appl Mater Interfaces 2017;9:44410-22. [PMID: 29210279 DOI: 10.1021/acsami.7b17022] [Cited by in Crossref: 89] [Cited by in F6Publishing: 91] [Article Influence: 14.8] [Reference Citation Analysis]
77 Zou Q, Tang R, Zhao H, Jiang J, Li J, Fu Y. Hyaluronic-Acid-Assisted Facile Synthesis of MnWO 4 Single-Nanoparticle for Efficient Trimodal Imaging and Liver–Renal Structure Display. ACS Appl Nano Mater 2018;1:101-10. [DOI: 10.1021/acsanm.7b00047] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
78 Kim T, Lemaster JE, Chen F, Li J, Jokerst JV. Photoacoustic Imaging of Human Mesenchymal Stem Cells Labeled with Prussian Blue-Poly(l-lysine) Nanocomplexes. ACS Nano 2017;11:9022-32. [PMID: 28759195 DOI: 10.1021/acsnano.7b03519] [Cited by in Crossref: 87] [Cited by in F6Publishing: 94] [Article Influence: 14.5] [Reference Citation Analysis]
79 Ren S, Cheng X, Chen M, Liu C, Zhao P, Huang W, He J, Zhou Z, Miao L. Hypotoxic and Rapidly Metabolic PEG-PCL-C3-ICG Nanoparticles for Fluorescence-Guided Photothermal/Photodynamic Therapy against OSCC. ACS Appl Mater Interfaces 2017;9:31509-18. [PMID: 28858474 DOI: 10.1021/acsami.7b09522] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 9.3] [Reference Citation Analysis]
80 Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017;18:E1102. [PMID: 28531102 DOI: 10.3390/ijms18051102] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 7.8] [Reference Citation Analysis]
81 Chen H, Ma Y, Wang X, Zha Z. Multifunctional phase-change hollow mesoporous Prussian blue nanoparticles as a NIR light responsive drug co-delivery system to overcome cancer therapeutic resistance. J Mater Chem B 2017;5:7051-8. [DOI: 10.1039/c7tb01712j] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 8.2] [Reference Citation Analysis]