BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu H, Jin H, Wang C, Zhang Z, Ruan H, Sun L, Yang C, Li Y, Qin W, Wang C. Synergistic Cisplatin/Doxorubicin Combination Chemotherapy for Multidrug-Resistant Cancer via Polymeric Nanogels Targeting Delivery. ACS Appl Mater Interfaces 2017;9:9426-36. [PMID: 28247750 DOI: 10.1021/acsami.6b16844] [Cited by in Crossref: 105] [Cited by in F6Publishing: 109] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Safari Sharafshadeh M, Tafvizi F, Khodarahmi P, Ehtesham S. Preparation and physicochemical properties of cisplatin and doxorubicin encapsulated by niosome alginate nanocarrier for cancer therapy. Int J Biol Macromol 2023;235:123686. [PMID: 36801304 DOI: 10.1016/j.ijbiomac.2023.123686] [Reference Citation Analysis]
2 Barman R, Bej R, Dey P, Ghosh S. Cisplatin-Conjugated Polyurethane Capsule for Dual Drug Delivery to a Cancer Cell. ACS Appl Mater Interfaces 2023. [PMID: 36745598 DOI: 10.1021/acsami.2c22146] [Reference Citation Analysis]
3 Barani M, Khatami M, Behnam B, Rajendram R, Kesharwani P, Sahebkar A. Aptamer-conjugated carbon nanotubes or graphene for targeted cancer therapy and diagnosis. Aptamers Engineered Nanocarriers for Cancer Therapy 2023. [DOI: 10.1016/b978-0-323-85881-6.00018-x] [Reference Citation Analysis]
4 Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants'o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022;14. [PMID: 36559335 DOI: 10.3390/pharmaceutics14122839] [Reference Citation Analysis]
5 Qu F, Shu J, Wang S, Haghighatbin MA, Cui H. Chemiluminescent Nanogels as Intensive and Stable Signal Probes for Fast Immunoassay of SARS-CoV-2 Nucleocapsid Protein. Anal Chem 2022;94:17073-80. [PMID: 36448939 DOI: 10.1021/acs.analchem.2c03055] [Reference Citation Analysis]
6 Maruf A, Milewska M, Lalik A, Wandzik I. pH and Reduction Dual-Responsive Nanogels as Smart Nanocarriers to Resist Doxorubicin Aggregation. Molecules 2022;27:5983. [DOI: 10.3390/molecules27185983] [Reference Citation Analysis]
7 Pavan SR, Prabhu A. Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: a review. J Mater Sci. [DOI: 10.1007/s10853-022-07649-z] [Reference Citation Analysis]
8 Chis AA, Arseniu AM, Morgovan C, Dobrea CM, Frum A, Juncan AM, Butuca A, Ghibu S, Gligor FG, Rus LL. Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022;14:1773. [DOI: 10.3390/pharmaceutics14091773] [Reference Citation Analysis]
9 Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022;153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Torabi M, Yaghoobi F, Shervedani RK, Kefayat A, Ghahremani F, Harsini PR. Mn(II) & Gd(III) Deferrioxamine Complex Contrast Agents & Temozolomide Cancer Prodrug Immobilized on Folic Acid Targeted Graphene/Polyacrylic Acid Nanocarrier: MRI Efficiency, Drug Stability & Interactions with Cancer Cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.129797] [Reference Citation Analysis]
11 Ouyang X, Chen Y, Tejaswi BS, Arumugam S, Secor E, Weiss TR, Leapman M, Ali A. Fermented Soy Drink (Q-CAN® PLUS) Induces Apoptosis and Reduces Viability of Cancer Cells. Nutrition and Cancer. [DOI: 10.1080/01635581.2022.2077385] [Reference Citation Analysis]
12 Zhang X, Wei P, Wang Z, Zhao Y, Xiao W, Bian Y, Liang D, Lin Q, Song W, Jiang W, Wang H. Herceptin-Conjugated DOX-Fe3O4/P(NIPAM-AA-MAPEG) Nanogel System for HER2-Targeted Breast Cancer Treatment and Magnetic Resonance Imaging. ACS Appl Mater Interfaces 2022;14:15956-69. [PMID: 35378977 DOI: 10.1021/acsami.1c24770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Alam Khan S, Jawaid Akhtar M. Structural modification and strategies for the enhanced doxorubicin drug delivery. Bioorganic Chemistry 2022;120:105599. [DOI: 10.1016/j.bioorg.2022.105599] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
14 Anirudhan TS, Mohan M, Rajeev MR. Modified chitosan-hyaluronic acid based hydrogel for the pH-responsive Co-delivery of cisplatin and doxorubicin. Int J Biol Macromol 2022;201:378-88. [PMID: 35033527 DOI: 10.1016/j.ijbiomac.2022.01.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
15 Arkaban H, Karimi Shervedani R, Yaghoobi F, Kefayat A, Ghahremani F. Imaging and therapeutic capabilities of the AuNPs@MnCO3/Mn3O4, coated with PAA and integrated with folic acid, doxorubicin and propidium iodide for murine breast cancer. Journal of Drug Delivery Science and Technology 2022;67:102818. [DOI: 10.1016/j.jddst.2021.102818] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Fu S, Li G, Zang W, Zhou X, Shi K, Zhai Y. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B 2022;12:92-106. [PMID: 35127374 DOI: 10.1016/j.apsb.2021.08.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
17 Materón EM, Shimizu FM, Figueiredo Dos Santos K, Nascimento GF, Geraldo VPN, Oliveira ON Jr, Faria RC. Membrane model as key tool in the study of glutathione-s-transferase mediated anticancer drug resistance. Biomed Pharmacother 2022;145:112426. [PMID: 34861633 DOI: 10.1016/j.biopha.2021.112426] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. Adv Mater 2021;33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
19 Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:54621-47. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
20 Li L, Lu Y, Qian Z, Yang Z, Zong S, Wang Z, Cui Y. A Ti2N MXene-based nanosystem with ultrahigh drug loading for dual-strategy synergistic oncotherapy. Nanoscale 2021;13:18546-57. [PMID: 34730162 DOI: 10.1039/d1nr04008a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
21 Hu L, Xiong C, Wei G, Yu Y, Li S, Xiong X, Zou JJ, Tian J. Stimuli-responsive charge-reversal MOF@polymer hybrid nanocomposites for enhanced co-delivery of chemotherapeutics towards combination therapy of multidrug-resistant cancer. J Colloid Interface Sci 2021;608:1882-93. [PMID: 34749141 DOI: 10.1016/j.jcis.2021.10.070] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
22 Arkaban H, Karimi Shervedani R, Yaghoobi F, Kefayat A. A nanocomposite theranostic system, consisting of AuNPs@MnCO3/Mn3O4 coated with PAA and integrated with folic acid, doxorubicin, and propidium iodide: Synthesis, characterization and examination for capturing of cancer cells. Inorganic Chemistry Communications 2021;128:108566. [DOI: 10.1016/j.inoche.2021.108566] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Xue X, Wu Y, Xu X, Xu B, Chen Z, Li T. pH and Reduction Dual-Responsive Bi-Drugs Conjugated Dextran Assemblies for Combination Chemotherapy and In Vitro Evaluation. Polymers (Basel) 2021;13:1515. [PMID: 34066882 DOI: 10.3390/polym13091515] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
24 Arkaban H, Khajeh Ebrahimi A, Yarahmadi A, Zarrintaj P, Barani M. Development of a multifunctional system based on CoFe2O4@polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. Nanotechnology 2021;32. [PMID: 33857938 DOI: 10.1088/1361-6528/abf878] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
25 Wei X, Song M, Li W, Huang J, Yang G, Wang Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Theranostics 2021;11:6334-54. [PMID: 33995661 DOI: 10.7150/thno.59342] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
26 Luo S, Wang Y, Shen S, Tang P, Liu Z, Zhang S, Wu D. IR780‐Loaded Hyaluronic Acid@Gossypol–Fe(III)–EGCG Infinite Coordination Polymer Nanoparticles for Highly Efficient Tumor Photothermal/Coordinated Dual Drugs Synergistic Therapy. Adv Funct Mater 2021;31:2100954. [DOI: 10.1002/adfm.202100954] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
27 Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021;13:303-28. [PMID: 33776489 DOI: 10.2147/JEP.S267383] [Cited by in Crossref: 51] [Cited by in F6Publishing: 58] [Article Influence: 25.5] [Reference Citation Analysis]
28 Song X, Yan T, Tian F, Li F, Ren L, Li Q, Zhang S. Aptamer Functionalized Upconversion Nanotheranostic Agent With Nuclear Targeting as the Highly Localized Drug-Delivery System of Doxorubicin. Front Bioeng Biotechnol 2021;9:639487. [PMID: 33692990 DOI: 10.3389/fbioe.2021.639487] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
29 Mollaei M, Hassan ZM, Khorshidi F, Langroudi L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl Oncol 2021;14:101056. [PMID: 33684837 DOI: 10.1016/j.tranon.2021.101056] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
30 Silva DM, Dos Reis LG, Tobin MJ, Vongsvivut J, Traini D, Sencadas V. Co-delivery of inhalable therapies: Controlling active ingredients spatial distribution and temporal release. Mater Sci Eng C Mater Biol Appl 2021;122:111831. [PMID: 33641884 DOI: 10.1016/j.msec.2020.111831] [Reference Citation Analysis]
31 González-urías A, Manzanares-guevara LA, Licea-claveríe Á, Ochoa-terán A, Licea-navarro AF, Bernaldez-sarabia J, Zapata-gonzález I. Stimuli responsive nanogels with intrinsic fluorescence: Promising nanovehicles for controlled drug delivery and cell internalization detection in diverse cancer cell lines. European Polymer Journal 2021;144:110200. [DOI: 10.1016/j.eurpolymj.2020.110200] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
32 Miroshnik D, VN Karazin Kharkiv National University, Research Institute of Biology, Shckorbatov Y, VN Karazin Kharkiv National University, Research Institute of Biology. Response of isolated buccal epithelium cells on the combined action of anti-tumor antibiotic doxorubicin and magnetic field. VLUBS 2021. [DOI: 10.30970/vlubs.2020.83.02] [Reference Citation Analysis]
33 Xie P, Wang Y, Wei D, Zhang L, Zhang B, Xiao H, Song H, Mao X. Nanoparticle-based drug delivery systems with platinum drugs for overcoming cancer drug resistance. J Mater Chem B 2021;9:5173-94. [PMID: 34116565 DOI: 10.1039/d1tb00753j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
34 Dahri M, Abolmaali SS, Abedanzadeh M, Salmanpour M, Maleki R. Composition and surface chemistry engineering of graphene grafting chitosan for stimuli-responsive cancer therapy: An in-silico study. Informatics in Medicine Unlocked 2021;24:100627. [DOI: 10.1016/j.imu.2021.100627] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Li Y, Jiang L, Qiao Y, Wan D, Huang Y. Yolk–shell magnetic composite Fe3O4@Co/Zn-ZIF for MR imaging-guided chemotherapy of tumors in vivo. New J Chem 2021;45:4326-4334. [DOI: 10.1039/d0nj05723a] [Reference Citation Analysis]
36 Karuppaiya V, Annamalai A, Soundarapandian K. Nanotherapeutics: Tumor delivery of drugs and genes using nanoparticles for synergistic therapeutic effects in the modern pharmaceutical world for welfare of human. Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications 2021. [DOI: 10.1016/b978-0-12-821013-0.00008-8] [Reference Citation Analysis]
37 Li Z, Huang J, Wu J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomater Sci 2021;9:574-89. [DOI: 10.1039/d0bm01729a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 21.0] [Reference Citation Analysis]
38 Jiang F, Ren J, Gao Y, Wang J, Zhao Y, Dai F. Legumain-induced intracerebrally crosslinked vesicles for suppressing efflux transport of Alzheimer's disease multi-drug nanosystem. Bioact Mater 2021;6:1750-64. [PMID: 33313452 DOI: 10.1016/j.bioactmat.2020.11.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. European Journal of Pharmaceutics and Biopharmaceutics 2020;157:121-53. [DOI: 10.1016/j.ejpb.2020.10.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
40 El-wakil MH, Khattab SN, El-yazbi AF, El-nikhely N, Soffar A, Khalil HH. New chalcone-tethered 1,3,5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorganic Chemistry 2020;105:104393. [DOI: 10.1016/j.bioorg.2020.104393] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
41 Zhan Y, Wang H, Su M, Sun Z, Zhang Y, He P. Mesoporous silica and polymer hybrid nanogels for multistage delivery of an anticancer drug. J Mater Sci 2021;56:4830-42. [DOI: 10.1007/s10853-020-05576-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Deng Z, Wang N, Ai F, Wang Z, Zhu G. Nanomaterial‐mediated platinum drug‐based combinatorial cancer therapy. View 2021;2:20200030. [DOI: 10.1002/viw.20200030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
43 Sui J, He M, Yang Y, Ma M, Guo Z, Zhao M, Liang J, Sun Y, Fan Y, Zhang X. Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization. ACS Appl Mater Interfaces 2020;12:51198-211. [PMID: 33147005 DOI: 10.1021/acsami.0c13986] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
44 Zhao H, Zhao Y, Xu J, Feng X, Liu G, Zhao Y, Yang X. Programmable co-assembly of various drugs with temperature sensitive nanogels for optimizing combination chemotherapy. Chemical Engineering Journal 2020;398:125614. [DOI: 10.1016/j.cej.2020.125614] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
45 Du C, Ding Y, Qian J, Zhang R, Dong CM. Dual drug-paired polyprodrug nanotheranostics reverse multidrug resistant cancers via mild photothermal-cocktail chemotherapy. J Mater Chem B 2019;7:5306-19. [PMID: 31411235 DOI: 10.1039/c9tb01368g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
46 Xiao X, Oswald JT, Wang T, Zhang W, Li W. Use of Anticancer Platinum Compounds in Combination Therapies and Challenges in Drug Delivery. Curr Med Chem 2020;27:3055-78. [PMID: 30394206 DOI: 10.2174/0929867325666181105115849] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
47 Yang J, Hou M, Sun W, Wu Q, Xu J, Xiong L, Chai Y, Liu Y, Yu M, Wang H, Xu ZP, Liang X, Zhang C. Sequential PDT and PTT Using Dual-Modal Single-Walled Carbon Nanohorns Synergistically Promote Systemic Immune Responses against Tumor Metastasis and Relapse. Adv Sci (Weinh) 2020;7:2001088. [PMID: 32832363 DOI: 10.1002/advs.202001088] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 22.0] [Reference Citation Analysis]
48 Purushothaman B, Lee J, Hong S, Song JM. Multifunctional TPP-PEG-biotin self-assembled nanoparticle drug delivery-based combination therapeutic approach for co-targeting of GRP78 and lysosome. J Nanobiotechnology 2020;18:102. [PMID: 32690101 DOI: 10.1186/s12951-020-00661-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
49 Das M, Nariya P, Joshi A, Vohra A, Devkar R, Seshadri S, Thakore S. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydr Polym 2020;247:116751. [PMID: 32829867 DOI: 10.1016/j.carbpol.2020.116751] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
50 Wei P, Gangapurwala G, Pretzel D, Wang L, Schubert S, Brendel JC, Schubert US. Tunable nanogels by host-guest interaction with carboxylate pillar[5]arene for controlled encapsulation and release of doxorubicin. Nanoscale 2020;12:13595-605. [PMID: 32555817 DOI: 10.1039/d0nr01881c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
51 Yu Q, Deng T, Lin FC, Zhang B, Zink JI. Supramolecular Assemblies of Heterogeneous Mesoporous Silica Nanoparticles to Co-deliver Antimicrobial Peptides and Antibiotics for Synergistic Eradication of Pathogenic Biofilms. ACS Nano 2020;14:5926-37. [PMID: 32310641 DOI: 10.1021/acsnano.0c01336] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 21.3] [Reference Citation Analysis]
52 Wei P, Czaplewska JA, Wang L, Schubert S, Brendel JC, Schubert US. Straightforward Access to Glycosylated, Acid Sensitive Nanogels by Host-Guest Interactions with Sugar-Modified Pillar[5]arenes. ACS Macro Lett 2020;9:540-5. [PMID: 35648509 DOI: 10.1021/acsmacrolett.0c00030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
53 He L, Qing F, Li M, Lan D. Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy. Int J Nanomedicine 2020;15:2337-49. [PMID: 32308385 DOI: 10.2147/IJN.S240707] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
54 Wu C, Liu J, Zhai Z, Yang L, Tang X, Zhao L, Xu K, Zhong W. Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy. Acta Biomater 2020;106:278-88. [PMID: 32084599 DOI: 10.1016/j.actbio.2020.02.021] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
55 Yu J, Hu F, Zhu Q, Li X, Ren H, Fan S, Qian B, Zhai B, Yang D. PD-L1 monoclonal antibody-decorated nanoliposomes loaded with Paclitaxel and P-gp transport inhibitor for the synergistic chemotherapy against multidrug resistant gastric cancers. Nanoscale Res Lett 2020;15:59. [PMID: 32166458 DOI: 10.1186/s11671-019-3228-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
56 Lv Q, Yu S, Quan F, He C, Chen X. Thermosensitive Polypeptide Hydrogels Co‐Loaded with Two Anti‐Tumor Agents to Reduce Multi‐Drug Resistance and Enhance Local Tumor Treatment. Adv Therap 2020;3:1900165. [DOI: 10.1002/adtp.201900165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
57 Zhao G, Sun Y, Dong X. Zwitterionic Polymer Micelles with Dual Conjugation of Doxorubicin and Curcumin: Synergistically Enhanced Efficacy against Multidrug-Resistant Tumor Cells. Langmuir 2020;36:2383-95. [DOI: 10.1021/acs.langmuir.9b03722] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
58 Shen S, Zhang X, Zhang F, Wang D, Long D, Niu Y. Three-gradient constructions in a flow-rate insensitive microfluidic system for drug screening towards personalized treatment. Talanta 2020;208:120477. [DOI: 10.1016/j.talanta.2019.120477] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
59 Gonçalves M, Mignani S, Rodrigues J, Tomás H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. J Control Release 2020;317:347-74. [PMID: 31751636 DOI: 10.1016/j.jconrel.2019.11.016] [Cited by in Crossref: 45] [Cited by in F6Publishing: 52] [Article Influence: 15.0] [Reference Citation Analysis]
60 Ding J, Zhang X, Chen C, Huang Y, Yu X, Li X. Ultra pH-sensitive polymeric nanovesicles co-deliver doxorubicin and navitoclax for synergetic therapy of endometrial carcinoma. Biomater Sci 2020;8:2264-73. [DOI: 10.1039/d0bm00112k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
61 Gonçalves M, Mignani S, Rodrigues J, Tomás H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release 2020;317:347-74. [DOI: 10.1016/j.jconrel.2019.11.016] [Reference Citation Analysis]
62 García MC. Nano- and microparticles as drug carriers. Engineering Drug Delivery Systems 2020. [DOI: 10.1016/b978-0-08-102548-2.00004-4] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
63 Ezzati N, Mahjoub AR, Abolhosseini Shahrnoy A, Syrgiannis Z. Amino Acid-functionalized hollow mesoporous silica nanospheres as efficient biocompatible drug carriers for anticancer applications. International Journal of Pharmaceutics 2019;572:118709. [DOI: 10.1016/j.ijpharm.2019.118709] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
64 Luo J, Zhang X, Zhang C, Wang T, Chen X, Chen H, King S, Wang C. Highly stable, active and recyclable solid acid catalyst based on polymer-coated magnetic composite particles. Chinese Chemical Letters 2019;30:2043-6. [DOI: 10.1016/j.cclet.2019.05.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
65 Liao J, Peng H, Wei X, Song Y, Liu C, Li D, Yin Y, Xiong X, Zheng H, Wang Q. A bio-responsive 6-mercaptopurine/doxorubicin based "Click Chemistry" polymeric prodrug for cancer therapy. Mater Sci Eng C Mater Biol Appl 2020;108:110461. [PMID: 31924029 DOI: 10.1016/j.msec.2019.110461] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
66 Khafaji M, Zamani M, Vossoughi M, Iraji Zad A. Doxorubicin/Cisplatin-Loaded Superparamagnetic Nanoparticles As A Stimuli-Responsive Co-Delivery System For Chemo-Photothermal Therapy. Int J Nanomedicine 2019;14:8769-86. [PMID: 31806971 DOI: 10.2147/IJN.S226254] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
67 Mackiewicz M, Stojek Z, Karbarz M. Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change. R Soc Open Sci 2019;6:190981. [PMID: 31827839 DOI: 10.1098/rsos.190981] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
68 Darge HF, Andrgie AT, Hanurry EY, Birhan YS, Mekonnen TW, Chou HY, Hsu WH, Lai JY, Lin SY, Tsai HC. Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm 2019;572:118799. [PMID: 31678386 DOI: 10.1016/j.ijpharm.2019.118799] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
69 Gonzalez-urias A, Zapata-gonzalez I, Licea-claverie A, Licea-navarro AF, Bernaldez-sarabia J, Cervantes-luevano K. Cationic versus anionic core-shell nanogels for transport of cisplatin to lung cancer cells. Colloids and Surfaces B: Biointerfaces 2019;182:110365. [DOI: 10.1016/j.colsurfb.2019.110365] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
70 Li Y, Chen M, Yao B, Lu X, Zhang X, He P, Vasilatos SN, Ren X, Bian W, Yao C. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrug-resistant breast cancer therapy. J Mater Chem B 2019;7:5814-24. [PMID: 31495855 DOI: 10.1039/c9tb00651f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
71 Wang Y, Qian J, Yang M, Xu W, Wang J, Hou G, Ji L, Suo A. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer. Carbohydr Polym 2019;225:115206. [PMID: 31521263 DOI: 10.1016/j.carbpol.2019.115206] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
72 Liu C, Han Y, Zhang J, Kankala RK, Wang S, Chen A. Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy. Chemical Engineering Journal 2019;370:1188-99. [DOI: 10.1016/j.cej.2019.03.272] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 17.5] [Reference Citation Analysis]
73 Wang Q, Zou C, Wang L, Gao X, Wu J, Tan S, Wu G. Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer. Acta Biomater 2019;94:469-81. [PMID: 31141733 DOI: 10.1016/j.actbio.2019.05.061] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
74 Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA. Co-Delivery Nanosystems for Cancer Treatment: A Review. PNT 2019;7:90-112. [DOI: 10.2174/2211738507666190321112237] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
75 Stanislawska I, Liwinska W, Lyp M, Stojek Z, Zabost E. Recent Advances in Degradable Hybrids of Biomolecules and NGs for Targeted Delivery. Molecules 2019;24:E1873. [PMID: 31096669 DOI: 10.3390/molecules24101873] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
76 Nair PR. Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers (Basel) 2019;11:E630. [PMID: 30959799 DOI: 10.3390/polym11040630] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
77 Pan J, Rostamizadeh K, Filipczak N, Torchilin VP. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules 2019;24:E1035. [PMID: 30875934 DOI: 10.3390/molecules24061035] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 12.5] [Reference Citation Analysis]
78 Liu CG, Kankala RK, Liao HY, Chen AZ, Wang SB. Engineered pH-responsive hydrazone-carboxylate complexes-encapsulated 2D matrices for cathepsin-mediated apoptosis in cancer. J Biomed Mater Res A 2019;107:1184-94. [PMID: 30650242 DOI: 10.1002/jbm.a.36610] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
79 Gesche J, Beckert S, Neunhoeffer F, Kachanov D, Königsrainer A, Seitz G, Fuchs J. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: A safe treatment option for intraperitoneal rhabdomyosarcoma in children below 5 years of age. Pediatr Blood Cancer 2019;66:e27517. [PMID: 30362235 DOI: 10.1002/pbc.27517] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
80 Guo XL, Kang XX, Wang YQ, Zhang XJ, Li CJ, Liu Y, Du LB. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater 2019;84:367-77. [PMID: 30528609 DOI: 10.1016/j.actbio.2018.12.007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 15.8] [Reference Citation Analysis]
81 Zhuang W, Wang Y, Cui P, Xing L, Lee J, Kim D, Jiang H, Oh Y. Applications of π-π stacking interactions in the design of drug-delivery systems. Journal of Controlled Release 2019;294:311-26. [DOI: 10.1016/j.jconrel.2018.12.014] [Cited by in Crossref: 135] [Cited by in F6Publishing: 139] [Article Influence: 33.8] [Reference Citation Analysis]
82 Zhukova OV. Polymer Derivatives of Anticancer Drugs: Features of Synthesis and Biological Activity. Ref J Chem 2019;9:1-11. [DOI: 10.1134/s2079978019010011] [Reference Citation Analysis]
83 Nguyen NT, Nguyen NNT, Tran NTN, Le PN, Nguyen TBT, Nguyen NH, Bach LG, Doan VN, Tran HLB, Le VT, Tran NQ. Synergic Activity Against MCF-7 Breast Cancer Cell Growth of Nanocurcumin-Encapsulated and Cisplatin-Complexed Nanogels. Molecules 2018;23:E3347. [PMID: 30567316 DOI: 10.3390/molecules23123347] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
84 Tiwari R, Jain P, Asati S, Haider T, Soni V, Pandey V. State-of-art based approaches for anticancer drug-targeting to nucleus. Journal of Drug Delivery Science and Technology 2018;48:383-92. [DOI: 10.1016/j.jddst.2018.10.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
85 Wei P, Gangapurwala G, Pretzel D, Leiske MN, Wang L, Hoeppener S, Schubert S, Brendel JC, Schubert US. Smart pH-Sensitive Nanogels for Controlled Release in an Acidic Environment. Biomacromolecules 2019;20:130-40. [PMID: 30365881 DOI: 10.1021/acs.biomac.8b01228] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
86 Goswami U, Kandimalla R, Kalita S, Chattopadhyay A, Ghosh SS. Polyethylene Glycol-Encapsulated Histone Deacetylase Inhibitor Drug-Composite Nanoparticles for Combination Therapy with Artesunate. ACS Omega 2018;3:11504-16. [PMID: 30320264 DOI: 10.1021/acsomega.8b02105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
87 Zhang Y, Zhang J, Xu W, Xiao G, Ding J, Chen X. Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomater 2018;77:63-73. [PMID: 30006312 DOI: 10.1016/j.actbio.2018.07.021] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 11.0] [Reference Citation Analysis]
88 Chang CE, Hsieh CM, Chen LC, Su CY, Liu DZ, Jhan HJ, Ho HO, Sheu MT. Novel application of pluronic lecithin organogels (PLOs) for local delivery of synergistic combination of docetaxel and cisplatin to improve therapeutic efficacy against ovarian cancer. Drug Deliv 2018;25:632-43. [PMID: 29463123 DOI: 10.1080/10717544.2018.1440444] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
89 Gao X, Yang H, Wu M, Shi K, Zhou C, Peng J, Yang Q. Targeting Delivery of Lidocaine and Cisplatin by Nanogel Enhances Chemotherapy and Alleviates Metastasis. ACS Appl Mater Interfaces 2018;10:25228-40. [PMID: 29979563 DOI: 10.1021/acsami.8b09376] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
90 Huang D, Qian H, Qiao H, Chen W, Feijen J, Zhong Z. Bioresponsive functional nanogels as an emerging platform for cancer therapy. Expert Opin Drug Deliv 2018;15:703-16. [PMID: 29976103 DOI: 10.1080/17425247.2018.1497607] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
91 Qin S, Cheng Y, Lei Q, Zhang A, Zhang X. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 2018;171:178-97. [DOI: 10.1016/j.biomaterials.2018.04.027] [Cited by in Crossref: 115] [Cited by in F6Publishing: 128] [Article Influence: 23.0] [Reference Citation Analysis]
92 Cheng X, Qin J, Wang X, Zha Q, Yao W, Fu S, Tang R. Acid-degradable lactobionic acid-modified soy protein nanogels crosslinked by ortho ester linkage for efficient antitumor in vivo. European Journal of Pharmaceutics and Biopharmaceutics 2018;128:247-58. [DOI: 10.1016/j.ejpb.2018.05.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
93 Fan M, Wang F, Wang C. Reflux Precipitation Polymerization: A New Platform for the Preparation of Uniform Polymeric Nanogels for Biomedical Applications. Macromol Biosci 2018;18:1800077. [DOI: 10.1002/mabi.201800077] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
94 Guan H, Wang L, Zhang J, Xing Y, Cai K. Selective Enrichment of Polydopamine in Mesoporous Nanocarriers for Nuclear-Targeted Drug Delivery. Part Part Syst Charact 2018;35:1800011. [DOI: 10.1002/ppsc.201800011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
95 Achkar IW, Abdulrahman N, Al-Sulaiti H, Joseph JM, Uddin S, Mraiche F. Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med. 2018;16:96. [PMID: 29642900 DOI: 10.1186/s12967-018-1471-1] [Cited by in Crossref: 79] [Cited by in F6Publishing: 87] [Article Influence: 15.8] [Reference Citation Analysis]
96 Li Y, Bui QN, Duy LTM, Yang HY, Lee DS. One-Step Preparation of pH-Responsive Polymeric Nanogels as Intelligent Drug Delivery Systems for Tumor Therapy. Biomacromolecules 2018;19:2062-70. [PMID: 29625005 DOI: 10.1021/acs.biomac.8b00195] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 10.2] [Reference Citation Analysis]
97 Pugazhendhi A, Edison TNJI, Velmurugan BK, Jacob JA, Karuppusamy I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci 2018;200:26-30. [PMID: 29534993 DOI: 10.1016/j.lfs.2018.03.023] [Cited by in Crossref: 204] [Cited by in F6Publishing: 212] [Article Influence: 40.8] [Reference Citation Analysis]
98 Yang J, Su H, Sun W, Cai J, Liu S, Chai Y, Zhang C. Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metastases. Theranostics 2018;8:1966-84. [PMID: 29556368 DOI: 10.7150/thno.23848] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 11.6] [Reference Citation Analysis]
99 Li X, Yuan S, Shea KJ, Qiu G, Lu X, Zhang R. Redox/temperature responsive nonionic nanogel and photonic crystal hydrogel: Comparison between N, N′-Bis(acryloyl)cystamine and N, N′-methylenebisacrylamide. Polymer 2018;137:112-21. [DOI: 10.1016/j.polymer.2017.12.066] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
100 Girma WM, Tzing S, Tseng P, Huang C, Ling Y, Chang J. Synthesis of Cisplatin(IV) Prodrug-Tethered CuFeS 2 Nanoparticles in Tumor-Targeted Chemotherapy and Photothermal Therapy. ACS Appl Mater Interfaces 2018;10:4590-602. [DOI: 10.1021/acsami.7b19640] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
101 Mu Q, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK, Ho RJY. Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 2018;26:435-47. [PMID: 29285948 DOI: 10.1080/1061186X.2017.1419363] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
102 Siqueira NM, Cirne MF, Immich MF, Poletto F. Stimuli-responsive polymeric hydrogels and nanogels for drug delivery applications. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1 2018. [DOI: 10.1016/b978-0-08-101997-9.00017-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
103 Bueno C, Oliveira C, Rangel-yagui C. Polymeric and liposomal nanomaterials. Nanobiomaterials 2018. [DOI: 10.1016/b978-0-08-100716-7.00017-9] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
104 Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, Rao R, Kumar S, Mahant S, Khurana SK, Iqbal HMN, Dhama K, Misri J, Prasad G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018;97:1521-37. [PMID: 29793315 DOI: 10.1016/j.biopha.2017.11.026] [Cited by in Crossref: 168] [Cited by in F6Publishing: 167] [Article Influence: 33.6] [Reference Citation Analysis]
105 Li Y, Thambi T, Lee DS. Co-Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects. Adv Healthc Mater 2018;7. [PMID: 28941203 DOI: 10.1002/adhm.201700886] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 13.6] [Reference Citation Analysis]
106 Chen H, Ma Y, Lan H, Zhao Y, Zhi D, Cui S, Du J, Zhang Z, Zhen Y, Zhang S. Dual stimuli-responsive saccharide core based nanocarrier for efficient Birc5-shRNA delivery. J Mater Chem B 2018;6:7530-42. [DOI: 10.1039/c8tb01683f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
107 García M, Aloisio C, Onnainty R, Ullio-gamboa G. Self-assembled nanomaterials. Nanobiomaterials. Elsevier; 2018. pp. 41-94. [DOI: 10.1016/b978-0-08-100716-7.00003-9] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
108 Ghosal A, Tiwari S, Mishra A, Vashist A, Rawat NK, Ahmad S, Bhattacharya J. Design and Engineering of Nanogels. Nanogels for Biomedical Applications 2017. [DOI: 10.1039/9781788010481-00009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
109 Benyettou F, Alhashimi M, O’connor M, Pasricha R, Brandel J, Traboulsi H, Mazher J, Olsen J, Trabolsi A. Sequential Delivery of Doxorubicin and Zoledronic Acid to Breast Cancer Cells by CB[7]-Modified Iron Oxide Nanoparticles. ACS Appl Mater Interfaces 2017;9:40006-16. [DOI: 10.1021/acsami.7b11423] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
110 Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 2017;9:E46. [PMID: 29036899 DOI: 10.3390/pharmaceutics9040046] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 15.5] [Reference Citation Analysis]
111 Luan S, Zhu Y, Wu X, Wang Y, Liang F, Song S. Hyaluronic-Acid-Based pH-Sensitive Nanogels for Tumor-Targeted Drug Delivery. ACS Biomater Sci Eng 2017;3:2410-9. [DOI: 10.1021/acsbiomaterials.7b00444] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 6.8] [Reference Citation Analysis]
112 Zhang Y, Zhang C, Chen J, Liu L, Hu M, Li J, Bi H. Trackable Mitochondria-Targeting Nanomicellar Loaded with Doxorubicin for Overcoming Drug Resistance. ACS Appl Mater Interfaces 2017;9:25152-63. [PMID: 28697306 DOI: 10.1021/acsami.7b07219] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 11.2] [Reference Citation Analysis]
113 Zhang L, Pan J, Dong S, Li Z. The application of polysaccharide-based nanogels in peptides/proteins and anticancer drugs delivery. Journal of Drug Targeting 2017;25:673-84. [DOI: 10.1080/1061186x.2017.1326123] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]