BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang S, Guo Y, Dong Y, Wu Y, Cheng L, Wang Y, Xing M, Yuan Q. A Novel Nanosilver/Nanosilica Hydrogel for Bone Regeneration in Infected Bone Defects. ACS Appl Mater Interfaces. 2016;8:13242-13250. [PMID: 27167643 DOI: 10.1021/acsami.6b01432] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Cao M, Liu C, Li M, Zhang X, Peng L, Liu L, Liao J, Yang J. Recent Research on Hybrid Hydrogels for Infection Treatment and Bone Repair. Gels 2022;8:306. [DOI: 10.3390/gels8050306] [Reference Citation Analysis]
2 Zheng S, Zhong H, Cheng H, Li X, Zeng G, Chen T, Zou Y, Liu W, Sun C. Engineering Multifunctional Hydrogel With Osteogenic Capacity for Critical-Size Segmental Bone Defect Repair. Front Bioeng Biotechnol 2022;10:899457. [DOI: 10.3389/fbioe.2022.899457] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhang CL, Song DJ, Zhang LD, Liu L, Zhu BL. Research on Mechanism of Nanometric Bone Pulp Activated with Double Gene as Bone Morphogenetic Protein 1 and Vascular Endothelial Growth Factor for Improving the Strength of Centrum in Osteoporosis. J Biomed Nanotechnol 2022;18:1035-43. [PMID: 35854465 DOI: 10.1166/jbn.2022.3312] [Reference Citation Analysis]
4 Xu L, Ye Q, Xie J, Yang J, Jiang W, Yuan H, Li J. An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for infected bone defect repair. J Mater Chem B 2021. [PMID: 34908091 DOI: 10.1039/d1tb02230j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ding X, Shi J, Wei J, Li Y, Wu X, Zhang Y, Jiang X, Zhang X, Lai H. A biopolymer hydrogel electrostatically reinforced by amino-functionalized bioactive glass for accelerated bone regeneration. Sci Adv 2021;7:eabj7857. [PMID: 34890238 DOI: 10.1126/sciadv.abj7857] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
6 Geng B, Li P, Fang F, Shi W, Glowacki J, Pan D, Shen L. Antibacterial and osteogenic carbon quantum dots for regeneration of bone defects infected with multidrug-resistant bacteria. Carbon 2021;184:375-85. [DOI: 10.1016/j.carbon.2021.08.040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 Wang Z, Zhang X, Cao T, Wang T, Sun L, Wang K, Fan X. Antiliquid-Interfering, Antibacteria, and Adhesive Wearable Strain Sensor Based on Superhydrophobic and Conductive Composite Hydrogel. ACS Appl Mater Interfaces 2021;13:46022-32. [PMID: 34542266 DOI: 10.1021/acsami.1c15052] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
8 Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022;8:267-95. [PMID: 34541401 DOI: 10.1016/j.bioactmat.2021.06.027] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 41.0] [Reference Citation Analysis]
9 He M, Hou Y, Zhu C, He M, Jiang Y, Feng G, Liu L, Li Y, Chen C, Zhang L. 3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration. Bioconjug Chem 2021. [PMID: 34247477 DOI: 10.1021/acs.bioconjchem.1c00322] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Huang Y, Du Z, Zheng T, Jing W, Liu H, Liu X, Mao J, Zhang X, Cai Q, Chen D, Yang X. Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect. J Biomed Mater Res A 2021. [PMID: 34173709 DOI: 10.1002/jbm.a.37252] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Fan D, Liu H, Zhang Z, Su M, Yuan Z, Lin Y, Yang S, Li W, Zhang X. Resveratrol and Angiogenin-2 Combined With PEGDA/TCS Hydrogel for the Targeted Therapy of Hypoxic Bone Defects via Activation of the Autophagy Pathway. Front Pharmacol 2021;12:618724. [PMID: 33927615 DOI: 10.3389/fphar.2021.618724] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Karthik C, Caroline DG, Dhanam Priya M, Pandi Prabha S. Synthesis, Characterization of Ag-SiO2 Nanocomposite and Its Application in Food Packaging. J Inorg Organomet Polym 2021;31:2532-41. [DOI: 10.1007/s10904-020-01853-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
13 Ordikhani F, Zandi N, Mazaheri M, Luther GA, Ghovvati M, Akbarzadeh A, Annabi N. Targeted nanomedicines for the treatment of bone disease and regeneration. Med Res Rev 2021;41:1221-54. [PMID: 33347711 DOI: 10.1002/med.21759] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
14 Fang B, Qiu P, Xia C, Cai D, Zhao C, Chen Y, Wang H, Liu S, Cheng H, Tang Z, Wang B, Fan S, Lin X. Extracellular matrix scaffold crosslinked with vancomycin for multifunctional antibacterial bone infection therapy. Biomaterials 2021;268:120603. [PMID: 33378735 DOI: 10.1016/j.biomaterials.2020.120603] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
15 Qiao S, Wu D, Li Z, Zhu Y, Zhan F, Lai H, Gu Y. The combination of multi-functional ingredients-loaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect treatment. J Tissue Eng 2020;11:2041731420965797. [PMID: 33149880 DOI: 10.1177/2041731420965797] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
16 Xu L, Bai X, Yang J, Li J, Xing J, Yuan H, Xie J, Li J. Preparation and characterisation of a gellan gum-based hydrogel enabling osteogenesis and inhibiting Enterococcus faecalis. Int J Biol Macromol 2020;165:2964-73. [PMID: 33086112 DOI: 10.1016/j.ijbiomac.2020.10.083] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
17 Ibrahim DM, Sani ES, Soliman AM, Zandi N, Mostafavi E, Youssef AM, Allam NK, Annabi N. Bioactive and Elastic Nanocomposites with Antimicrobial Properties for Bone Tissue Regeneration. ACS Appl Bio Mater 2020;3:3313-25. [DOI: 10.1021/acsabm.0c00250] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
18 Bi S, Pang J, Huang L, Sun M, Cheng X, Chen X. The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. International Journal of Biological Macromolecules 2020;146:99-109. [DOI: 10.1016/j.ijbiomac.2019.12.186] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
19 Ou Q, Huang K, Fu C, Huang C, Fang Y, Gu Z, Wu J, Wang Y. Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration. Chemical Engineering Journal 2020;382:123019. [DOI: 10.1016/j.cej.2019.123019] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 22.5] [Reference Citation Analysis]
20 Saha T, Houshyar S, Ranjan Sarker S, Ghosh S, Dekiwadia C, Padhye R, Wang X. Surface-Functionalized Polypropylene Surgical Mesh for Enhanced Performance and Biocompatibility. ACS Appl Bio Mater 2019;2:5905-15. [DOI: 10.1021/acsabm.9b00849] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Bi S, Wang P, Hu S, Li S, Pang J, Zhou Z, Sun G, Huang L, Cheng X, Xing S, Chen X. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydrate Polymers 2019;224:115176. [DOI: 10.1016/j.carbpol.2019.115176] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 20.0] [Reference Citation Analysis]
22 Fan D, Wang G, Ma A, Wang W, Chen H, Bai L, Yang H, Wei D, Yang L. Surface Engineering of Porous Carbon for Self-Healing Nanocomposite Hydrogels by Mussel-Inspired Chemistry and PET-ATRP. ACS Appl Mater Interfaces 2019;11:38126-35. [DOI: 10.1021/acsami.9b12264] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
23 Gao Y, Chang T, Wu Y. In-situ synthesis of acylated sodium alginate-g-(tetrahydrofuran5-b-polyisobutylene) terpolymer/Ag-NPs nanocomposites. Carbohydrate Polymers 2019;219:201-9. [DOI: 10.1016/j.carbpol.2019.04.087] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wei P, Jing W, Yuan Z, Huang Y, Guan B, Zhang W, Zhang X, Mao J, Cai Q, Chen D, Yang X. Vancomycin- and Strontium-Loaded Microspheres with Multifunctional Activities against Bacteria, in Angiogenesis, and in Osteogenesis for Enhancing Infected Bone Regeneration. ACS Appl Mater Interfaces 2019;11:30596-609. [DOI: 10.1021/acsami.9b10219] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 17.7] [Reference Citation Analysis]
25 Song X, He J, Li C, Sun C, Pang X, Zhang J, Zang Q, Luo Z, Li X, Zhang R, Abliz Z. Fabrication of homogenous three-dimensional biomimetic tissue for mass spectrometry imaging. J Mass Spectrom 2019;54:378-88. [DOI: 10.1002/jms.4342] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
26 Wei P, Yuan Z, Jing W, Guan B, Liu Z, Zhang X, Mao J, Chen D, Cai Q, Yang X. Regenerating infected bone defects with osteocompatible microspheres possessing antibacterial activity. Biomater Sci 2019;7:272-86. [DOI: 10.1039/c8bm00903a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
27 Wan W, Cai F, Huang J, Chen S, Liao Q. A skin-inspired 3D bilayer scaffold enhances granulation tissue formation and anti-infection for diabetic wound healing. J Mater Chem B 2019;7:2954-61. [DOI: 10.1039/c8tb03341b] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
28 Niu Y, Guo T, Yuan X, Zhao Y, Ren L. An injectable supramolecular hydrogel hybridized with silver nanoparticles for antibacterial application. Soft Matter 2018;14:1227-34. [PMID: 29354845 DOI: 10.1039/c7sm02251d] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
29 Wu D, Xie X, Kadi AA, Zhang Y. Photosensitive peptide hydrogels as smart materials for applications. Chinese Chemical Letters 2018;29:1098-104. [DOI: 10.1016/j.cclet.2018.04.030] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
30 Vashisth P, Bellare JR. Development of hybrid scaffold with biomimetic 3D architecture for bone regeneration. Nanomedicine: Nanotechnology, Biology and Medicine 2018;14:1325-36. [DOI: 10.1016/j.nano.2018.03.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
31 Chowdhury MA. Silica Materials for Biomedical Applications in Drug Delivery, Bone Treatment or Regeneration, and MRI Contrast Agent. Ref J Chem 2018;8:223-41. [DOI: 10.1134/s2079978018020024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
32 Chen Y, Ye S, Sato H, Zhu Y, Shanov V, Tiasha T, D'amore A, Luketich S, Wan G, Wagner WR. Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction. J Tissue Eng Regen Med 2018;12:1374-88. [DOI: 10.1002/term.2668] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
33 Zhang Y, Zheng Z, Yu M, Hsu C, Berthiaume EA, Pan H, Zhang X, Stieg AZ, Wu B, Wang H, Ting K, Soo C. Using an Engineered Galvanic Redox System to Generate Positive Surface Potentials that Promote Osteogenic Functions. ACS Appl Mater Interfaces 2018;10:15449-60. [PMID: 29664609 DOI: 10.1021/acsami.8b02798] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
34 Safwat E, Hassan ML, Saniour S, Zaki DY, Eldeftar M, Saba D, Zazou M. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration. J Biomater Appl 2018;32:1371-81. [PMID: 29554839 DOI: 10.1177/0885328218763866] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
35 Malhotra K, Shankar S, Rai R, Singh Y. Broad-Spectrum Antibacterial Activity of Proteolytically Stable Self-Assembled αγ-Hybrid Peptide Gels. Biomacromolecules 2018;19:782-92. [PMID: 29384665 DOI: 10.1021/acs.biomac.7b01582] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
36 Bai S, Mu Z, Huang Y, Ji P. Guanylate Binding Protein 1 Inhibits Osteogenic Differentiation of Human Mesenchymal Stromal Cells Derived from Bone Marrow. Sci Rep 2018;8:1048. [PMID: 29348519 DOI: 10.1038/s41598-018-19401-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
37 Zhou X, Weng W, Chen B, Feng W, Wang W, Nie W, Chen L, Mo X, Su J, He C. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J Mater Chem B 2018;6:740-52. [DOI: 10.1039/c7tb01246b] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 12.3] [Reference Citation Analysis]
38 Huang JJ, Ren JA, Wang GF, Li ZA, Wu XW, Ren HJ, Liu S. 3D-printed “fistula stent” designed for management of enterocutaneous fistula: An advanced strategy. World J Gastroenterol 2017; 23(41): 7489-7494 [PMID: 29151703 DOI: 10.3748/wjg.v23.i41.7489] [Cited by in CrossRef: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
39 Huang J, Ren J, Chen G, Deng Y, Wang G, Wu X. Evaluation of the Xanthan-Based Film Incorporated with Silver Nanoparticles for Potential Application in the Nonhealing Infectious Wound. Journal of Nanomaterials 2017;2017:1-10. [DOI: 10.1155/2017/6802397] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
40 Barui AK, Kotcherlakota R, Bollu VS, Nethi SK, Patra CR. Biomedical and drug delivery applications of functionalized inorganic nanomaterials. Biopolymer-Based Composites 2017. [DOI: 10.1016/b978-0-08-101914-6.00011-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
41 Zhang H, Wang J, Ma H, Zhou Y, Ma X, Liu J, Huang J, Yu N. Bilayered PLGA/Wool Keratin Composite Membranes Support Periodontal Regeneration in Beagle Dogs. ACS Biomater Sci Eng 2016;2:2162-75. [DOI: 10.1021/acsbiomaterials.6b00357] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
42 Chowdhury MA. The Silica-based Formulations for Drug Delivery, Bone Treatment, and Bone Regeneration. ChemBioEng Reviews 2016;3:229-46. [DOI: 10.1002/cben.201500026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
43 Dong Y, Liu W, Lei Y, Wu T, Zhang S, Guo Y, Liu Y, Chen D, Yuan Q, Wang Y. Effect of gelatin sponge with colloid silver on bone healing in infected cranial defects. Mater Sci Eng C Mater Biol Appl 2017;70:371-7. [PMID: 27770905 DOI: 10.1016/j.msec.2016.09.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
44 Zhang S, Xu K, Ge L, Darabi MA, Xie F, Derakhshanfar S, Liu Y, Xing MMQ, Wei H. A novel nano-silver coated and hydrogel-impregnated polyurethane nanofibrous mesh for ventral hernia repair. RSC Adv 2016;6:90571-8. [DOI: 10.1039/c6ra10014g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]