BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu W, Feng X, Liu Z, Zhao M, He P, Yang S, Tang S, Chen D, Guo Q, Wang G, Ding G. Sensitive, Reusable, Surface-Enhanced Raman Scattering Sensors Constructed with a 3D Graphene/Si Hybrid. ACS Appl Mater Interfaces 2021;13:23081-91. [PMID: 33957757 DOI: 10.1021/acsami.1c02182] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Fatkullin M, Rodriguez RD, Petrov I, Villa NE, Lipovka A, Gridina M, Murastov G, Chernova A, Plotnikov E, Averkiev A, Cheshev D, Semyonov O, Gubarev F, Brazovskiy K, Sheng W, Amin I, Liu J, Jia X, Sheremet E. Molecular Plasmonic Silver Forests for the Photocatalytic-Driven Sensing Platforms. Nanomaterials (Basel) 2023;13. [PMID: 36903801 DOI: 10.3390/nano13050923] [Reference Citation Analysis]
2 Han Y, Han Y, He Q, Liu H, Zhang Y, Han L. Ultrasensitive and Reliable SERS Chip Based on Facile Assembly of AgNPs on Porous LIG to Enhance the Local Electromagnetic Field. J Phys Chem C 2023. [DOI: 10.1021/acs.jpcc.2c08038] [Reference Citation Analysis]
3 Lu L, Zhou Y, Zheng T, Tian Y. SERS and EC dual-mode detection for dopamine based on WO3-SnO2 nanoflake arrays. Nano Res . [DOI: 10.1007/s12274-022-4984-0] [Reference Citation Analysis]
4 Zhou Q, Jin M, Wu W, Fu L, Yin C, Karimi-maleh H. Graphene-Based Surface-Enhanced Raman Scattering (SERS) Sensing: Bibliometrics Based Analysis and Review. Chemosensors 2022;10:317. [DOI: 10.3390/chemosensors10080317] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Li J, Zhang H, Yu D, Wang W, Song W, Yang L, Jiang X, Zhao B. Mixed valence Ce-doped TiO2 with multiple energy levels and efficient charge transfer for boosted SERS performance. Spectrochim Acta A Mol Biomol Spectrosc 2022;281:121643. [PMID: 35863183 DOI: 10.1016/j.saa.2022.121643] [Reference Citation Analysis]
6 An K, Chen M, He B, Ai H, Wang W, Zhang Z, Pan Z, Chen S, Ip WF, Lo KH, Chai J, Wang S, Yang M, Wang S, Pan H. Wafer‐Scale 2H‐MoS 2 Monolayer for High Surface‐enhanced Raman Scattering Performance: Charge‐Transfer Coupled with Molecule Resonance. Adv Materials Technologies. [DOI: 10.1002/admt.202200217] [Reference Citation Analysis]
7 He Z, Yu L, Wang G, Ye C, Feng X, Zheng L, Yang S, Zhang G, Wei G, Liu Z, Xue Z, Ding G. Investigation of a Highly Sensitive Surface-Enhanced Raman Scattering Substrate Formed by a Three-Dimensional/Two-Dimensional Graphene/Germanium Heterostructure. ACS Appl Mater Interfaces 2022;14:14764-73. [PMID: 35306813 DOI: 10.1021/acsami.2c00584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kang L, Zhang Y, Gong Q, Das CM, Shao H, Poenar DP, Coquet P, Yong K. Label-free plasmonic-based biosensing using a gold nanohole array chip coated with a wafer-scale deposited WS2 monolayer. RSC Adv 2022;12:33284-33292. [DOI: 10.1039/d2ra03479d] [Reference Citation Analysis]
9 Shi G, Han X, Gu J, Yuan W, Li K, Wang L, Han W, Gu J. Ag Nanoislands Modified Carbon Fiber Nanostructure: A Versatile and Ultrasensitive Surface-Enhanced Raman Scattering Platform for Antiepileptic Drug Detection. Coatings 2022;12:4. [DOI: 10.3390/coatings12010004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
10 Khan A, Kumar RR, Cong J, Imran M, Yang D, Yu X. CVD Graphene on Textured Silicon: An Emerging Technologically Versatile Heterostructure for Energy and Detection Applications. Adv Materials Inter 2022;9:2100977. [DOI: 10.1002/admi.202100977] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Huang H, Wang S, Chiang W. Microplasma-Engineered Ag/GONR-Based Nanocomposites for Selective and Label-Free SERS-Sensitive Detection of Dopamine. ACS Appl Nano Mater 2021;4:10360-9. [DOI: 10.1021/acsanm.1c01867] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]