1 |
Mardhekar S, Subramani B, Samudra P, Srikanth P, Mahida V, Ravindra Bhoge P, Toraskar S, Abraham NM, Kikkeri R. Sulfation of Heparan and Chondroitin Sulfate Ligands Enables Cell-Specific Homing of Nanoprobes. Chemistry 2023;29:e202202622. [PMID: 36325647 DOI: 10.1002/chem.202202622] [Reference Citation Analysis]
|
2 |
Sarma A, Sahu BP, Das MK. Exploration on Metal Nanoparticles for Treatment of Malaria. Malarial Drug Delivery Systems 2023. [DOI: 10.1007/978-3-031-15848-3_16] [Reference Citation Analysis]
|
3 |
San Anselmo M, Lantero E, Avalos-Padilla Y, Bouzón-Arnáiz I, Ramírez M, Postigo A, Serrano JL, Sierra T, Hernández-Ainsa S, Fernàndez-Busquets X. Heparin-Coated Dendronized Hyperbranched Polymers for Antimalarial Targeted Delivery. ACS Appl Polym Mater 2023;5:381-90. [PMID: 36686062 DOI: 10.1021/acsapm.2c01553] [Reference Citation Analysis]
|
4 |
Shen P, Jia Y, Shi S, Sun J, Han X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116851] [Reference Citation Analysis]
|
5 |
Chaves JB, Portugal Tavares de Moraes B, Regina Ferrarini S, Noé da Fonseca F, Silva AR, Gonçalves-de-albuquerque CF. Potential of nanoformulations in malaria treatment. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.999300] [Reference Citation Analysis]
|
6 |
Najer A, Blight J, Ducker CB, Gasbarri M, Brown JC, Che J, Høgset H, Saunders C, Ojansivu M, Lu Z, Lin Y, Yeow J, Rifaie-Graham O, Potter M, Tonkin R, Penders J, Doutch JJ, Georgiadou A, Barriga HMG, Holme MN, Cunnington AJ, Bugeon L, Dallman MJ, Barclay WS, Stellacci F, Baum J, Stevens MM. Potent Virustatic Polymer-Lipid Nanomimics Block Viral Entry and Inhibit Malaria Parasites In Vivo. ACS Cent Sci 2022;8:1238-57. [PMID: 36188342 DOI: 10.1021/acscentsci.1c01368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
7 |
Luo S, Qin S, Oudeng G, Zhang L. Iron-Based Hollow Nanoplatforms for Cancer Imaging and Theranostics. Nanomaterials 2022;12:3023. [DOI: 10.3390/nano12173023] [Reference Citation Analysis]
|
8 |
Darwish AS, Hussien MS, Fahmy ZH, Bayaumy FE. Lattice strain-, size-, and magnetic- dependent anti-Trichinella spiralis effect of Er3+ lightly doped zinc ferrite nanoparticles: In-vivo and in-vitro evaluations. Journal of Magnetism and Magnetic Materials 2022;545:168744. [DOI: 10.1016/j.jmmm.2021.168744] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. Materials (Basel) 2021;14:6812. [PMID: 34832213 DOI: 10.3390/ma14226812] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Patra S, Singh M, Wasnik K, Pareek D, Gupta PS, Mukherjee S, Paik P. Polymeric Nanoparticle Based Diagnosis and Nanomedicine for Treatment and Development of Vaccines for Cerebral Malaria: A Review on Recent Advancement. ACS Appl Bio Mater 2021;4:7342-65. [PMID: 35006689 DOI: 10.1021/acsabm.1c00635] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
11 |
Ge G, Yang S, Hou Z, Gan M, Tao H, Zhang W, Li W, Wang Z, Hao Y, Gu Y, Geng D. Theaflavin-3,3'-Digallate Promotes the Formation of Osteoblasts Under Inflammatory Environment and Increases the Bone Mass of Ovariectomized Mice. Front Pharmacol 2021;12:648969. [PMID: 33833684 DOI: 10.3389/fphar.2021.648969] [Reference Citation Analysis]
|