BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Y, Hsu YH, Huang AP, Hsu SH. Semi-Interpenetrating Polymer Network of Hyaluronan and Chitosan Self-Healing Hydrogels for Central Nervous System Repair. ACS Appl Mater Interfaces 2020;12:40108-20. [PMID: 32808527 DOI: 10.1021/acsami.0c11433] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Li S, Ke Z, Peng X, Fan P, Chao J, Wu P, Xiao P, Zhou Y. Injectable and fast gelling hyaluronate hydrogels with rapid self-healing ability for spinal cord injury repair. Carbohydrate Polymers 2022;298:120081. [DOI: 10.1016/j.carbpol.2022.120081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Gao Y, Zhou Z. Automatic Recognition and Repair System of Mural Image Cracks Based on Cloud Edge Computing and Digitization. Mobile Information Systems 2022;2022:1-12. [DOI: 10.1155/2022/1534596] [Reference Citation Analysis]
3 Xu J, Tai C, Chen T, Hsu S. An anti-inflammatory electroconductive hydrogel with self-healing property for the treatment of Parkinson’s disease. Chemical Engineering Journal 2022;446:137180. [DOI: 10.1016/j.cej.2022.137180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Liu X, Wang J, Wang P, Zhong L, Wang S, Feng Q, Wei X, Zhou L. Hypoxia-pretreated mesenchymal stem cell-derived exosomes-loaded low-temperature extrusion 3D-printed implants for neural regeneration after traumatic brain injury in canines. Front Bioeng Biotechnol 2022;10:1025138. [DOI: 10.3389/fbioe.2022.1025138] [Reference Citation Analysis]
5 Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. Adv Sci (Weinh) 2022;:e2202980. [PMID: 36031395 DOI: 10.1002/advs.202202980] [Reference Citation Analysis]
6 Li X, Duan L, Kong M, Wen X, Guan F, Ma S. Applications and Mechanisms of Stimuli-Responsive Hydrogels in Traumatic Brain Injury. Gels 2022;8:482. [DOI: 10.3390/gels8080482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chen Y, Lin J, Yan W. A Prosperous Application of Hydrogels With Extracellular Vesicles Release for Traumatic Brain Injury. Front Neurol 2022;13:908468. [DOI: 10.3389/fneur.2022.908468] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu Y, Lin SH, Chuang WT, Dai NT, Hsu SH. Biomimetic Strain-Stiffening in Chitosan Self-Healing Hydrogels. ACS Appl Mater Interfaces 2022;14:16032-46. [PMID: 35321544 DOI: 10.1021/acsami.2c01720] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Deng P, Chen F, Zhang H, Chen Y, Zhou J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv Healthc Mater 2022;:e2200115. [PMID: 35396930 DOI: 10.1002/adhm.202200115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
11 Zheng D, Chen T, Han L, Lv S, Yin J, Yang K, Wang Y, Xu N. Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue. Int Wound J 2022. [PMID: 35266304 DOI: 10.1111/iwj.13699] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Chen S, Fan Y, Song J, Xue B. The remarkable role of hydrogen bond, halogen, and solvent effect on self-healing supramolecular gel. Materials Today Chemistry 2022;23:100719. [DOI: 10.1016/j.mtchem.2021.100719] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Khodadadi Yazdi M, Zarrintaj P, Khodadadi A, Arefi A, Seidi F, Shokrani H, Saeb MR, Mozafari M. Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydr Polym 2022;278:118998. [PMID: 34973800 DOI: 10.1016/j.carbpol.2021.118998] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
14 Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022;14:297. [DOI: 10.3390/pharmaceutics14020297] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Guo L, Guan Y, Liu P, Gao L, Wang Z, Huang S, Peng L, Zhao Z. Chitosan hydrogel, as a biological macromolecule-based drug delivery system for exosomes and microvesicles in regenerative medicine: a mini review. Cellulose. [DOI: 10.1007/s10570-021-04330-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Jiang X, Yang X, Yang B, Zhang L, Lu A. Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture. Carbohydr Polym 2021;273:118547. [PMID: 34560959 DOI: 10.1016/j.carbpol.2021.118547] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
17 Liu J, He J, Huang Y, Ge L, Xiao H, Zeng L, Jiang Z, Lu M, Hu Z. Hypoxia-preconditioned mesenchymal stem cells attenuate microglial pyroptosis after intracerebral hemorrhage. Ann Transl Med 2021;9:1362. [PMID: 34733914 DOI: 10.21037/atm-21-2590] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Xuan H, Wu S, Fei S, Li B, Yang Y, Yuan H. Injectable nanofiber-polysaccharide self-healing hydrogels for wound healing. Mater Sci Eng C Mater Biol Appl 2021;128:112264. [PMID: 34474823 DOI: 10.1016/j.msec.2021.112264] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
19 Liu C, Fu L, Jiang T, Liang Y, Wei Y. High-strength and self-healable poly (acrylic acid) /chitosan hydrogel with organic-inorganic hydrogen bonding networks. Polymer 2021;230:124006. [DOI: 10.1016/j.polymer.2021.124006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Samal J, Segura T. Injectable biomaterial shuttles for cell therapy in stroke. Brain Res Bull 2021;176:25-42. [PMID: 34391821 DOI: 10.1016/j.brainresbull.2021.08.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Pishavar E, Khosravi F, Naserifar M, Rezvani Ghomi E, Luo H, Zavan B, Seifalian A, Ramakrishna S. Multifunctional and Self-Healable Intelligent Hydrogels for Cancer Drug Delivery and Promoting Tissue Regeneration In Vivo. Polymers (Basel) 2021;13:2680. [PMID: 34451220 DOI: 10.3390/polym13162680] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
22 Maiz-Fernández S, Barroso N, Pérez-Álvarez L, Silván U, Vilas-Vilela JL, Lanceros-Mendez S. 3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug release capability. Int J Biol Macromol 2021:S0141-8130(21)01681-0. [PMID: 34371046 DOI: 10.1016/j.ijbiomac.2021.08.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
23 Xiao M. Advances and rational design of chitosan-based autonomic self-healing hydrogels for biomedical applications. J Polym Res 2021;28. [DOI: 10.1007/s10965-021-02688-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Liu J, He J, Ge L, Xiao H, Huang Y, Zeng L, Jiang Z, Lu M, Hu Z. Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy. Stem Cell Res Ther 2021;12:413. [PMID: 34294127 DOI: 10.1186/s13287-021-02480-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
25 Wu P, Xi X, Li R, Sun G. Engineering Polysaccharides for Tissue Repair and Regeneration. Macromol Biosci 2021;:e2100141. [PMID: 34219388 DOI: 10.1002/mabi.202100141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Luo J, Shi X, Li L, Tan Z, Feng F, Li J, Pang M, Wang X, He L. An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury. Bioact Mater 2021;6:4816-29. [PMID: 34136725 DOI: 10.1016/j.bioactmat.2021.05.022] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
27 Chen S, Liu A, Wu C, Chen Y, Liu C, Zhang Y, Wu K, Wei D, Sun J, Zhou L, Fan H. Static-Dynamic Profited Viscoelastic Hydrogels for Motor-Clutch-Regulated Neurogenesis. ACS Appl Mater Interfaces 2021;13:24463-76. [PMID: 34024102 DOI: 10.1021/acsami.1c03821] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
28 Pitorre M, Gazaille C, Pham LTT, Frankova K, Béjaud J, Lautram N, Riou J, Perrot R, Geneviève F, Moal V, Benoit JP, Bastiat G. Polymer-free hydrogel made of lipid nanocapsules, as a local drug delivery platform. Mater Sci Eng C Mater Biol Appl 2021;126:112188. [PMID: 34082987 DOI: 10.1016/j.msec.2021.112188] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Lin S, Papadakis CM, Kang J, Lin J, Hsu S. Injectable Phenolic-Chitosan Self-Healing Hydrogel with Hierarchical Micelle Architectures and Fast Adhesiveness. Chem Mater 2021;33:3945-58. [DOI: 10.1021/acs.chemmater.1c00028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
30 Mo C, Xiang L, Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol Rapid Commun 2021;42:e2100025. [PMID: 33876841 DOI: 10.1002/marc.202100025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
31 Liu X, Ren Z, Liu F, Zhao L, Ling Q, Gu H. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. ACS Appl Mater Interfaces 2021;13:14612-22. [PMID: 33723988 DOI: 10.1021/acsami.1c03213] [Cited by in Crossref: 47] [Cited by in F6Publishing: 58] [Article Influence: 47.0] [Reference Citation Analysis]
32 Liu Y, Wong CW, Chang SW, Hsu SH. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing. Acta Biomater 2021;122:211-9. [PMID: 33444794 DOI: 10.1016/j.actbio.2020.12.051] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 24.0] [Reference Citation Analysis]
33 Zhang S, Zhao G, Wang J, Xie C, Liang W, Chen K, Wen Y, Li X. Organic Solvent-Free Preparation of Chitosan Nanofibers with High Specific Surface Charge and Their Application in Biomaterials. ACS Appl Mater Interfaces 2021;13:12347-58. [PMID: 33625203 DOI: 10.1021/acsami.0c21796] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
34 Lin J, Wang Z, Huang J, Tang S, Saiding Q, Zhu Q, Cui W. Microenvironment-Protected Exosome-Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring. Small 2021;17:e2007235. [PMID: 33590681 DOI: 10.1002/smll.202007235] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
35 Wang HJ, Chu YZ, Chen CK, Liao YS, Yeh MY. Preparation of conductive self-healing hydrogels via an interpenetrating polymer network method. RSC Adv 2021;11:6620-7. [PMID: 35423172 DOI: 10.1039/d0ra09476e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Kong Y, Hou Z, Zhou L, Zhang P, Ouyang Y, Wang P, Chen Y, Luo X. Injectable Self-Healing Hydrogels Containing CuS Nanoparticles with Abilities of Hemostasis, Antibacterial activity, and Promoting Wound Healing. ACS Biomater Sci Eng 2021;7:335-49. [PMID: 33371671 DOI: 10.1021/acsbiomaterials.0c01473] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
37 Maiz-Fernández S, Pérez-Álvarez L, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Mendez S. Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers (Basel) 2020;12:E2261. [PMID: 33019575 DOI: 10.3390/polym12102261] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]