BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Y, Zheng C, Liu S, Huang L, Fang T, Li JX, Xu F, Li F. Smart Glove Integrated with Tunable MWNTs/PDMS Fibers Made of a One-Step Extrusion Method for Finger Dexterity, Gesture, and Temperature Recognition. ACS Appl Mater Interfaces 2020;12:23764-73. [DOI: 10.1021/acsami.0c08114] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Xie Y, Ma Q, Yue B, Chen X, Jin Y, Qi H, Hu Y, Yu W, Dong X, Jiang H. Triboelectric nanogenerator based on flexible Janus nanofiber membrane with simultaneous high charge generation and charge capturing abilities. Chemical Engineering Journal 2023;452:139393. [DOI: 10.1016/j.cej.2022.139393] [Reference Citation Analysis]
2 Li Y, Liu Y, Peng B, Li X, Fang T, Liu S, Liu J, Li B, Li F. Stretchable, conductive, breathable and moisture-sensitive e-skin based on CNTs/graphene/GelMA mat for wound monitoring. Biomaterials Advances 2022;143:213172. [DOI: 10.1016/j.bioadv.2022.213172] [Reference Citation Analysis]
3 Zhang X, Tang S, Ma R, Chen Z, Zhuo J, Cao L, Yang J, Yang G, Yi F. High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy 2022;103:107778. [DOI: 10.1016/j.nanoen.2022.107778] [Reference Citation Analysis]
4 Zhou Y, Zhao L, Jia Q, Wang T, Sun P, Liu F, Yan X, Wang C, Sun Y, Lu G. Multifunctional Flexible Ionic Skin with Dual-Modal Output Based on Fibrous Structure. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c17498] [Reference Citation Analysis]
5 Otero-gonzález I, Caeiro-rodríguez M, Rodriguez-d’jesus A. Methods for Gastrointestinal Endoscopy Quantification: A Focus on Hands and Fingers Kinematics. Sensors 2022;22:9253. [DOI: 10.3390/s22239253] [Reference Citation Analysis]
6 Annabestani M, Esmaeili-dokht P, Olyanasab A, Orouji N, Alipour Z, Sayad MH, Rajabi K, Mazzolai B, Fardmanesh M. A new 3D, microfluidic-oriented, multi-functional, and highly stretchable soft wearable sensor. Sci Rep 2022;12:20486. [DOI: 10.1038/s41598-022-25048-x] [Reference Citation Analysis]
7 Zhang Y, Zhang Y, Zhou J, Zhang D, Lin H, Chen Y, Li Y, Xiong J. Stretchable Composite Conductive Fibers for Wearables. Adv Materials Technologies 2022. [DOI: 10.1002/admt.202201442] [Reference Citation Analysis]
8 Li Q, Liu Y, Chen D, Miao J, Zhang C, Cui D. High-Sensitive Wearable Strain Sensors Based on the Carbon Nanotubes@Porous Soft Silicone Elastomer with Excellent Stretchability, Durability, and Biocompatibility. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c15968] [Reference Citation Analysis]
9 Zhang W, Shi Y, Wang B, Han Y, Zhang R. High-Strength Electrospun Polydimethylsiloxane/Polytetrafluoroethylene Hybrid Membranes with Stable and Controllable Coral-like Structures. Composites Part A: Applied Science and Manufacturing 2022. [DOI: 10.1016/j.compositesa.2022.107316] [Reference Citation Analysis]
10 Lei M, Feng K, Ding S, Wang M, Dai Z, Liu R, Gao Y, Zhou Y, Xu Q, Zhou B. Breathable and Waterproof Electronic Skin with Three-Dimensional Architecture for Pressure and Strain Sensing in Nonoverlapping Mode. ACS Nano 2022. [PMID: 35856940 DOI: 10.1021/acsnano.2c04188] [Reference Citation Analysis]
11 Dong J, Li B, Xiao J, Liu G, Baulin V, Feng Y, Jia D, Tsivadze AY, Zhou Y. Carbon dots with tailor-made chelating ligands for specific metal ions recognition: Target synthesis and prediction of metal ions selectivity. Carbon 2022. [DOI: 10.1016/j.carbon.2022.07.035] [Reference Citation Analysis]
12 Qin M, Yuan W, Zhang X, Cheng Y, Xu M, Wei Y, Chen W, Huang D. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf B Biointerfaces 2022;214:112482. [PMID: 35366577 DOI: 10.1016/j.colsurfb.2022.112482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Cai J, Du M, Li Z. Flexible Temperature Sensors Constructed with Fiber Materials. Adv Materials Technologies. [DOI: 10.1002/admt.202101182] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
14 Song J, Wei Y, Xu M, Gao J, Luo L, Wu H, Li X, Li Y, Wang X. Highly Sensitive Flexible Temperature Sensor Made Using PEDOT:PSS/PANI. ACS Appl Polym Mater 2022;4:766-72. [DOI: 10.1021/acsapm.1c01224] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Vieira MA. Fabrication and Implementation of Nanomaterials-Assisted Flexible Sensors. Flexible Sensors for Energy-Harvesting Applications 2022. [DOI: 10.1007/978-3-030-99600-0_4] [Reference Citation Analysis]
16 Yang T, Jiang X, Huang Y, Tian Q, Zhang L, Dai Z, Zhu H. Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. iScience 2022;25:103728. [DOI: 10.1016/j.isci.2021.103728] [Reference Citation Analysis]
17 Tang C, Zhao X, Jia J, Wang S, Zha X, Yin B, Ke K, Bao R, Liu Z, Wang Y, Zhang K, Yang M, Yang W. Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening. Nano Energy 2021;90:106603. [DOI: 10.1016/j.nanoen.2021.106603] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
18 Li J, Liu X, Wang Z, Zhang T, Qiu S, Zhao H, Zhou X, Cai H, Ni R, Cangelosi A. Real-Time Hand Gesture Tracking for Human–Computer Interface Based on Multi-Sensor Data Fusion. IEEE Sensors J 2021;21:26642-54. [DOI: 10.1109/jsen.2021.3122236] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. Small 2021;:e2103734. [PMID: 34825473 DOI: 10.1002/smll.202103734] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
20 Cao Y, Pan S, Yan M, Sun C, Huang J, Zhong C, Wang L, Yi L. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals. BMC Biol 2021;19:252. [PMID: 34819062 DOI: 10.1186/s12915-021-01187-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Liu R, Wang S, Yang H, Shi C. Highly Stretchable Strain Sensor With Spiral Fiber for Curvature Sensing of a Soft Pneumatic Gripper. IEEE Sensors J 2021;21:23880-23888. [DOI: 10.1109/jsen.2021.3116427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 He Y, Lin M, Wang X, Liu K, Liu H, He T, Zhou P. Textile-film sensors for a comfortable intelligent pressure-sensing insole. Measurement 2021;184:109943. [DOI: 10.1016/j.measurement.2021.109943] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Zhou Z, Chen N, Zhong H, Zhang W, Zhang Y, Yin X, He B. Textile-Based Mechanical Sensors: A Review. Materials (Basel) 2021;14:6073. [PMID: 34683661 DOI: 10.3390/ma14206073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Zhang L, Li J, Wang F, Shi J, Chen W, Tao X. Flexible stimuli-responsive materials for smart personal protective equipment. Materials Science and Engineering: R: Reports 2021;146:100629. [DOI: 10.1016/j.mser.2021.100629] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhang Y, Wang C, Wang S, Lin Q, Luo Y, Li M, Xu X, Zhang Y, Han F, Jiang Z. A flexible smart glove for pressure and bending signal acquisition. 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) 2021. [DOI: 10.1109/3m-nano49087.2021.9599750] [Reference Citation Analysis]
26 Guo Y, Wei X, Gao S, Yue W, Li Y, Shen G. Recent Advances in Carbon Material‐Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Adv Funct Materials 2021;31:2104288. [DOI: 10.1002/adfm.202104288] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 34.0] [Reference Citation Analysis]
27 Yang R, Chang Y, Yang X, Dai J, Chen Y, Chang W, Xiong W. Electromechanical sorting method for improving the sensitivity of micropyramid carbon nanotube film flexible force sensor. Composites Part B: Engineering 2021;217:108818. [DOI: 10.1016/j.compositesb.2021.108818] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
28 Demolder C, Molina A, Hammond FL 3rd, Yeo WH. Recent advances in wearable biosensing gloves and sensory feedback biosystems for enhancing rehabilitation, prostheses, healthcare, and virtual reality. Biosens Bioelectron 2021;190:113443. [PMID: 34171820 DOI: 10.1016/j.bios.2021.113443] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 16.0] [Reference Citation Analysis]
29 Chen D, Chen T, Li Y, Li S, Zhang L, Ren Y, Wang Y, Liang J, Fu T, Zhang M, He X. A Flexible Sensor Based on 3D Gold@Carbonaceous Nanohybrid with Defect Sites of Conductivity for the Wearable Sensing at Low Stress. NANO 2021;16:2150044. [DOI: 10.1142/s1793292021500442] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Jiang X, Chen R, Zhu H. Recent progress in wearable tactile sensors combined with algorithms based on machine learning and signal processing. APL Materials 2021;9:030906. [DOI: 10.1063/5.0043842] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Song J. Fabricate Graphenne-based Textile Sensors and Their Applications. J Phys : Conf Ser 2021;1790:012063. [DOI: 10.1088/1742-6596/1790/1/012063] [Reference Citation Analysis]
32 Sanchez V, Walsh CJ, Wood RJ. Textile Technology for Soft Robotic and Autonomous Garments. Adv Funct Mater 2021;31:2008278. [DOI: 10.1002/adfm.202008278] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 29.5] [Reference Citation Analysis]
33 Niu Y, Liu H, He R, Li Z, Ren H, Gao B, Guo H, Genin GM, Xu F. The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Materials Today 2020;41:219-42. [DOI: 10.1016/j.mattod.2020.10.004] [Cited by in Crossref: 56] [Cited by in F6Publishing: 62] [Article Influence: 28.0] [Reference Citation Analysis]
34 Li Z, Qi X, Xu L, Lu H, Wang W, Jin X, Md ZI, Zhu Y, Fu Y, Ni Q, Dong Y. Self-Repairing, Large Linear Working Range Shape Memory Carbon Nanotubes/Ethylene Vinyl Acetate Fiber Strain Sensor for Human Movement Monitoring. ACS Appl Mater Interfaces 2020;12:42179-92. [DOI: 10.1021/acsami.0c12425] [Cited by in Crossref: 39] [Cited by in F6Publishing: 48] [Article Influence: 19.5] [Reference Citation Analysis]
35 Wen N, Zhang L, Jiang D, Wu Z, Li B, Sun C, Guo Z. Emerging flexible sensors based on nanomaterials: recent status and applications. J Mater Chem A 2020;8:25499-527. [DOI: 10.1039/d0ta09556g] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 21.0] [Reference Citation Analysis]