BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhai S, Hu X, Ji Z, Qin H, Wang Z, Hu Y, Xing D. Pulsed Microwave-Pumped Drug-Free Thermoacoustic Therapy by Highly Biocompatible and Safe Metabolic Polyarginine Probes. Nano Lett 2019;19:1728-35. [DOI: 10.1021/acs.nanolett.8b04723] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Shi J, Wang H, Wang Y, Peng Y, Huang X, Zhang Y, Geng H, Wang Y, Li X, Liu C, Liu C. Mitochondrion-targeting and in situ photocontrolled protein delivery via photocages. J Photochem Photobiol B 2023;238:112624. [PMID: 36521315 DOI: 10.1016/j.jphotobiol.2022.112624] [Reference Citation Analysis]
2 Li B, Yao X, Li J, Lu X, Zhang W, Duan W, Tian Y, Li D. A tumor microenvironment-activated metal-organic framework-based nanoplatform for amplified oxidative stress-induced enhanced chemotherapy. J Biol Chem 2023;299:102742. [PMID: 36435198 DOI: 10.1016/j.jbc.2022.102742] [Reference Citation Analysis]
3 Jiao X, Chen W, Fan D. Behind the Veil: A multidisciplinary discussion on protein–microwave interactions. Current Opinion in Food Science 2022. [DOI: 10.1016/j.cofs.2022.100936] [Reference Citation Analysis]
4 Chen X, Zhang S, Liu J, Ren M, Xing D, Qin H. Controlling dielectric loss of biodegradable black phosphorus nanosheets by iron-ion-modification for imaging-guided microwave thermoacoustic therapy. Biomaterials 2022;287:121662. [DOI: 10.1016/j.biomaterials.2022.121662] [Reference Citation Analysis]
5 Wang Z, Liu F, Liu Y, Huyan Y, Muhammad M, Xu Y, Li H, Sun S. Mitochondria-targeted nanoplatforms building for in situ ROS generating photodynamic tumor therapy through reinforcing mitochondria apoptotic pathway. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.129973] [Reference Citation Analysis]
6 Li W, Zhang S, Xing D, Qin H. Pulsed Microwave-Induced Thermoacoustic Shockwave for Precise Glioblastoma Therapy with the Skin and Skull Intact. Small 2022;18:e2201342. [PMID: 35585690 DOI: 10.1002/smll.202201342] [Reference Citation Analysis]
7 Sun M, Wang C, Lv M, Fan Z, Du J. Intracellular Self-Assembly of Peptides to Induce Apoptosis against Drug-Resistant Melanoma. J Am Chem Soc 2022. [PMID: 35357824 DOI: 10.1021/jacs.2c00697] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
8 Zhang S, Li W, Chen X, Ren M, Zhang H, Xing D, Qin H. Manganous-manganic oxide nanoparticle as an activatable microwave-induced thermoacoustic probe for deep-located tumor specific imaging in vivo. Photoacoustics 2022;26:100347. [PMID: 35345808 DOI: 10.1016/j.pacs.2022.100347] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Yang S, Leong J, Wang Y, Sim R, Tan KH, Chua YH, Tan N, Lee ALZ, Tay J, Yang YY. Drug-free neutrally charged polypeptide nanoparticles as anticancer agents. J Control Release 2022:S0168-3659(22)00160-2. [PMID: 35331785 DOI: 10.1016/j.jconrel.2022.03.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang Q, Qu B, Li J, Liu Y, Dong J, Peng X, Zhang R. Multifunctional MnO2/Ag3SbS3 Nanotheranostic Agent for Single-Laser-Triggered Tumor Synergistic Therapy in the NIR-II Biowindow. ACS Appl Mater Interfaces 2022;14:4980-94. [PMID: 35050589 DOI: 10.1021/acsami.1c21752] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
11 Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Adv Mater 2022;34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
12 Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front Bioeng Biotechnol 2021;9:744657. [PMID: 34646819 DOI: 10.3389/fbioe.2021.744657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Sun Z, Chen W, Liu J, Yu B, Jiang C, Lu L. Mitochondria-Targeting Enhanced Phototherapy by Intrinsic Characteristics Engineered "One-for-All" Nanoparticles. ACS Appl Mater Interfaces 2021;13:35568-78. [PMID: 34286585 DOI: 10.1021/acsami.1c10850] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
14 Liu W, Xiang H, Tan M, Chen Q, Jiang Q, Yang L, Cao Y, Wang Z, Ran H, Chen Y. Nanomedicine Enables Drug-Potency Activation with Tumor Sensitivity and Hyperthermia Synergy in the Second Near-Infrared Biowindow. ACS Nano 2021;15:6457-70. [PMID: 33750100 DOI: 10.1021/acsnano.0c08848] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
15 Zheng P, Ding B, Shi R, Jiang Z, Xu W, Li G, Ding J, Chen X. A Multichannel Ca2+ Nanomodulator for Multilevel Mitochondrial Destruction-Mediated Cancer Therapy. Adv Mater 2021;33:e2007426. [PMID: 33675268 DOI: 10.1002/adma.202007426] [Cited by in Crossref: 76] [Cited by in F6Publishing: 82] [Article Influence: 38.0] [Reference Citation Analysis]
16 Wu Z, Zeng F, Zhang L, Zhao S, Wu L, Qin H, Xing D. Defect-rich titanium nitride nanoparticle with high microwave-acoustic conversion efficiency for thermoacoustic imaging-guided deep tumor therapy. Nano Res 2021;14:2717-27. [DOI: 10.1007/s12274-020-3277-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
17 Afanador-delgado S, Sevilla-escoboza R, Marañón-ruíz V, Chiu R. Influence of the anthocyanin concentration in ethanolic extracts of Hibiscus Sabdariffa on thermocavitation: An analysis of the pulse frequency and amplitude. Optics & Laser Technology 2020;132:106468. [DOI: 10.1016/j.optlastec.2020.106468] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
18 Hao Q, Wang Z, Zhao W, Wen L, Wang W, Lu S, Xing D, Zhan M, Hu X. Dual-Responsive Polyprodrug Nanoparticles with Cascade-Enhanced Magnetic Resonance Signals for Deep-Penetration Drug Release in Tumor Therapy. ACS Appl Mater Interfaces 2020;12:49489-501. [PMID: 33079514 DOI: 10.1021/acsami.0c16110] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
19 Zeng F, Qin H, Liu L, Chang H, Chen Q, Wu L, Zhang L, Wu Z, Xing D. Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle. Nano Res 2020;:1-13. [PMID: 32904446 DOI: 10.1007/s12274-020-3028-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
20 Wang C, Zhao W, Cao B, Wang Z, Zhou Q, Lu S, Lu L, Zhan M, Hu X. Biofilm-Responsive Polymeric Nanoparticles with Self-Adaptive Deep Penetration for In Vivo Photothermal Treatment of Implant Infection. Chem Mater 2020;32:7725-38. [DOI: 10.1021/acs.chemmater.0c02055] [Cited by in Crossref: 56] [Cited by in F6Publishing: 38] [Article Influence: 18.7] [Reference Citation Analysis]
21 Ovais M, Mukherjee S, Pramanik A, Das D, Mukherjee A, Raza A, Chen C. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Adv Mater 2020;32:e2000055. [PMID: 32227413 DOI: 10.1002/adma.202000055] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 26.3] [Reference Citation Analysis]
22 Guo X, Cao B, Wang C, Lu S, Hu X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. Nanoscale 2020;12:7651-9. [PMID: 32207761 DOI: 10.1039/d0nr00181c] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 20.0] [Reference Citation Analysis]
23 Zheng Z, Liu H, Zhai S, Zhang H, Shan G, Kwok RTK, Ma C, Sung HHY, Williams ID, Lam JWY, Wong KS, Hu X, Tang BZ. Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. Chem Sci 2020;11:2494-503. [PMID: 34084415 DOI: 10.1039/c9sc06441a] [Cited by in Crossref: 95] [Cited by in F6Publishing: 99] [Article Influence: 31.7] [Reference Citation Analysis]