BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Uchida S, Perche F, Pichon C, Cabral H. Nanomedicine-Based Approaches for mRNA Delivery. Mol Pharm 2020;17:3654-84. [PMID: 32845639 DOI: 10.1021/acs.molpharmaceut.0c00618] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Karunakaran B, Gupta R, Patel P, Salave S, Sharma A, Desai D, Benival D, Kommineni N. Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines 2023;11:661. [DOI: 10.3390/vaccines11030661] [Reference Citation Analysis]
2 Ferreira AMDC. Editorial: Specialty grand challenge: Structure, spectroscopy, and imaging. Front Chem Biol 2023;2. [DOI: 10.3389/fchbi.2023.1146814] [Reference Citation Analysis]
3 Cheng F, Wang Y, Bai Y, Liang Z, Mao Q, Liu D, Wu X, Xu M. Research Advances on the Stability of mRNA Vaccines. Viruses 2023;15:668. [DOI: 10.3390/v15030668] [Reference Citation Analysis]
4 Zhong Y, Du S, Dong Y. mRNA delivery in cancer immunotherapy. Acta Pharmaceutica Sinica B 2023. [DOI: 10.1016/j.apsb.2023.03.001] [Reference Citation Analysis]
5 Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023;:e2202688. [PMID: 36785927 DOI: 10.1002/adhm.202202688] [Reference Citation Analysis]
6 Yan D, Lu H, Kaur A, Fu R, Wang N, Teh JH, Lou H, Aboagye EO, Chen R. Development and optimisation of cationic lipid nanoparticles for mRNA delivery.. [DOI: 10.1101/2023.02.07.524134] [Reference Citation Analysis]
7 Sommonte F, Denora N, Lamprou DA. Combining 3D Printing and Microfluidic Techniques: A Powerful Synergy for Nanomedicine. Pharmaceuticals (Basel) 2023;16. [PMID: 36678566 DOI: 10.3390/ph16010069] [Reference Citation Analysis]
8 De A, Ko YT. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement. Expert Opin Drug Deliv 2023;20:75-91. [PMID: 36445261 DOI: 10.1080/17425247.2023.2153832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yang W, Miyazaki T, Nakagawa Y, Boonstra E, Masuda K, Nakashima Y, Chen P, Mixich L, Barthelmes K, Matsumoto A, Mi P, Uchida S, Cabral H. Block catiomers with flanking hydrolyzable tyrosinate groups enhance in vivo mRNA delivery via π-π stacking-assisted micellar assembly. Sci Technol Adv Mater 2023;24:2170164. [PMID: 36950277 DOI: 10.1080/14686996.2023.2170164] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Demongeot J, Fougère C. mRNA COVID-19 Vaccines-Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines (Basel) 2022;11. [PMID: 36679885 DOI: 10.3390/vaccines11010040] [Reference Citation Analysis]
11 Yadav DN, Ali MS, Thanekar AM, Pogu SV, Rengan AK. Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy. Mol Pharm 2022;19:4506-26. [PMID: 36409653 DOI: 10.1021/acs.molpharmaceut.2c00811] [Reference Citation Analysis]
12 Park Y, Moses AS, Demessie AA, Singh P, Lee H, Korzun T, Taratula OR, Alani AWG, Taratula O. Poly(aspartic acid)-Based Polymeric Nanoparticle for Local and Systemic mRNA Delivery. Mol Pharm 2022;19:4696-704. [PMID: 36409995 DOI: 10.1021/acs.molpharmaceut.2c00738] [Reference Citation Analysis]
13 Gholizadeh O, Yasamineh S, Amini P, Afkhami H, Delarampour A, Akbarzadeh S, Karimi Matloub R, Zahedi M, Hosseini P, Hajiesmaeili M, Poortahmasebi V. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J 2022;19:206. [PMID: 36463213 DOI: 10.1186/s12985-022-01935-7] [Reference Citation Analysis]
14 Sarangi MK, Padhi S, Rath G, Nanda SS, Yi DK. Success of nano-vaccines against COVID-19: a transformation in nanomedicine. Expert Rev Vaccines 2022;21:1739-61. [PMID: 36384360 DOI: 10.1080/14760584.2022.2148659] [Reference Citation Analysis]
15 Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine – Tumor immune microenvironment. International Immunopharmacology 2022;113:109367. [DOI: 10.1016/j.intimp.2022.109367] [Reference Citation Analysis]
16 Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.11.026] [Reference Citation Analysis]
17 Toudeshkchouei MG, Tavakoli A, Mohammadghasemi H, Karimi A, Ai J, Rabiee M, Rabiee N. Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices. Future Medicinal Chemistry 2022. [DOI: 10.4155/fmc-2022-0027] [Reference Citation Analysis]
18 Liu T, Tian Y, Zheng A, Cui C. Design Strategies for and Stability of mRNA-Lipid Nanoparticle COVID-19 Vaccines. Polymers (Basel) 2022;14. [PMID: 36236141 DOI: 10.3390/polym14194195] [Reference Citation Analysis]
19 M. Alfagih I. Liposomes for Targeting RNA Interference-Based Therapy in Inflammatory Bowel Diseases. Liposomes - Recent Advances, New Perspectives and Applications [Working Title] 2022. [DOI: 10.5772/intechopen.106829] [Reference Citation Analysis]
20 Medjmedj A, Ngalle-Loth A, Clemençon R, Hamacek J, Pichon C, Perche F. In Cellulo and In Vivo Comparison of Cholesterol, Beta-Sitosterol and Dioleylphosphatidylethanolamine for Lipid Nanoparticle Formulation of mRNA. Nanomaterials (Basel) 2022;12:2446. [PMID: 35889670 DOI: 10.3390/nano12142446] [Reference Citation Analysis]
21 Yang W, Chen P, Boonstra E, Hong T, Cabral H. Polymeric Micelles with pH-Responsive Cross-Linked Core Enhance In Vivo mRNA Delivery. Pharmaceutics 2022;14:1205. [DOI: 10.3390/pharmaceutics14061205] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. Biology 2022;11:862. [DOI: 10.3390/biology11060862] [Reference Citation Analysis]
23 Lim SA, Cox A, Tung M, Chung EJ. Clinical progress of nanomedicine-based RNA therapies. Bioactive Materials 2022;12:203-13. [DOI: 10.1016/j.bioactmat.2021.10.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Huang P, Deng H, Zhou Y, Chen X. The roles of polymers in mRNA delivery. Matter 2022;5:1670-99. [DOI: 10.1016/j.matt.2022.03.006] [Reference Citation Analysis]
25 Yamada Y, Ishizuka S, Arai M, Maruyama M, Harashima H. Recent advances in delivering RNA-based therapeutics to mitochondria. Expert Opin Biol Ther 2022;:1-11. [PMID: 35543589 DOI: 10.1080/14712598.2022.2070427] [Reference Citation Analysis]
26 Yoshinaga N, Uchida S, Dirisala A, Naito M, Koji K, Osada K, Cabral H, Kataoka K. Bridging mRNA and Polycation Using RNA Oligonucleotide Derivatives Improves the Robustness of Polyplex Micelles for Efficient mRNA Delivery. Adv Healthc Mater 2022;11:e2102016. [PMID: 34913604 DOI: 10.1002/adhm.202102016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Shi J, Huang MW, Lu ZD, Du XJ, Shen S, Xu CF, Wang J. Delivery of mRNA for regulating functions of immune cells. J Control Release 2022:S0168-3659(22)00159-6. [PMID: 35337940 DOI: 10.1016/j.jconrel.2022.03.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Byun MJ, Lim J, Kim S, Park D, Kim T, Park W, Park CG. Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. BioChip J. [DOI: 10.1007/s13206-022-00052-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022;182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
30 Cox A, Lim SA, Chung EJ. Strategies to deliver RNA by nanoparticles for therapeutic potential. Mol Aspects Med 2022;83:100991. [PMID: 34366123 DOI: 10.1016/j.mam.2021.100991] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhang H, Bussmann J, Huhnke FH, Devoldere J, Minnaert AK, Jiskoot W, Serwane F, Spatz J, Röding M, De Smedt SC, Braeckmans K, Remaut K. Together is Better: mRNA Co-Encapsulation in Lipoplexes is Required to Obtain Ratiometric Co-Delivery and Protein Expression on the Single Cell Level. Adv Sci (Weinh) 2022;9:e2102072. [PMID: 34913603 DOI: 10.1002/advs.202102072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022;181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
33 Uchida S. Answering to social issues – Delivery of mRNA vaccines and therapeutics. Official Journal of the Japan Society of Drug Delivery System 2022;37:25-34. [DOI: 10.2745/dds.37.25] [Reference Citation Analysis]
34 Ni Q, Xu F, Wang Y, Li Y, Qing G, Zhang Y, Zhong J, Li J, Liang XJ. Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. J Control Release 2022;342:210-27. [PMID: 34998916 DOI: 10.1016/j.jconrel.2022.01.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Boonstra E, Uchida S, Cabral H. RNA/Polymer-Based Supramolecular Approaches for mRNA Delivery. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_15] [Reference Citation Analysis]
36 Yokoo H, Oba M, Uchida S. Cell-Penetrating Peptides: Emerging Tools for mRNA Delivery. Pharmaceutics 2021;14:78. [PMID: 35056974 DOI: 10.3390/pharmaceutics14010078] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
37 Jarak I, Pereira-silva M, Santos AC, Veiga F, Cabral H, Figueiras A. Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Applied Materials Today 2021;25:101217. [DOI: 10.1016/j.apmt.2021.101217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
38 Uchida S, Yamaberi Y, Tanaka M, Oba M. A helix foldamer oligopeptide improves intracellular stability and prolongs protein expression of the delivered mRNA. Nanoscale 2021;13:18941-6. [PMID: 34664600 DOI: 10.1039/d1nr03600a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
39 Uchida S. Platform Technologies for Improving <i>in vivo</i> Functionalities of mRNA Therapeutics. Funtai Kogakkaishi 2021;58:627-632. [DOI: 10.4164/sptj.58.627] [Reference Citation Analysis]
40 Shen M, Gong R, Li H, Yang Z, Wang Y, Li D. Identification of key molecular markers of acute coronary syndrome using peripheral blood transcriptome sequencing analysis and mRNA-lncRNA co-expression network construction. Bioengineered 2021. [PMID: 34753383 DOI: 10.1080/21655979.2021.2003932] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Moraes FC, Pichon C, Letourneur D, Chaubet F. miRNA Delivery by Nanosystems: State of the Art and Perspectives. Pharmaceutics 2021;13. [PMID: 34834316 DOI: 10.3390/pharmaceutics13111901] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
42 Maiti B, Bhattacharya S. Liposomal nanoparticles based on steroids and isoprenoids for nonviral gene delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1759. [PMID: 34729941 DOI: 10.1002/wnan.1759] [Reference Citation Analysis]
43 Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. Small Methods 2021;5:2100402. [PMID: 34514087 DOI: 10.1002/smtd.202100402] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
44 Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021;131:1-15. [PMID: 34133982 DOI: 10.1016/j.actbio.2021.06.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
45 Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021;:1-17. [PMID: 34394960 DOI: 10.1038/s41578-021-00358-0] [Cited by in Crossref: 308] [Cited by in F6Publishing: 354] [Article Influence: 154.0] [Reference Citation Analysis]
46 Granados-Riveron JT, Aquino-Jarquin G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother 2021;142:111953. [PMID: 34343897 DOI: 10.1016/j.biopha.2021.111953] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
47 Delehedde C, Even L, Midoux P, Pichon C, Perche F. Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics 2021;13:945. [PMID: 34202584 DOI: 10.3390/pharmaceutics13070945] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
48 Yoshinaga N, Naito M, Tachihara Y, Boonstra E, Osada K, Cabral H, Uchida S. PEGylation of mRNA by Hybridization of Complementary PEG-RNA Oligonucleotides Stabilizes mRNA without Using Cationic Materials. Pharmaceutics 2021;13:800. [PMID: 34071840 DOI: 10.3390/pharmaceutics13060800] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
49 Abbasi S, Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics 2021;13:644. [PMID: 34062771 DOI: 10.3390/pharmaceutics13050644] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
50 Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, Chhabra D, Joshi K, Bharani KK. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021;38:101142. [PMID: 33815564 DOI: 10.1016/j.nantod.2021.101142] [Cited by in Crossref: 95] [Cited by in F6Publishing: 100] [Article Influence: 47.5] [Reference Citation Analysis]
51 Aslan C, Kiaie SH, Zolbanin NM, Lotfinejad P, Ramezani R, Kashanchi F, Jafari R. Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol 2021;21:20. [PMID: 33691652 DOI: 10.1186/s12896-021-00683-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
52 Moraes FC, Marcelo Forero Ramirez L, Aid R, Benadda S, Maire M, Chauvierre C, Antunes JC, Chaubet F, Letourneur D. P-selectin targeting polysaccharide-based nanogels for miRNA delivery. International Journal of Pharmaceutics 2021;597:120302. [DOI: 10.1016/j.ijpharm.2021.120302] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
53 Alfagih IM, Aldosari B, AlQuadeib B, Almurshedi A, Alfagih MM. Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines. Pharmaceutics 2020;13:45. [PMID: 33396817 DOI: 10.3390/pharmaceutics13010045] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
54 Hsieh K, Hsu C, Hung I, Yeh C, Chen Y, Cheng C. Positively charged liposomes consisting of the KTTKS pentapeptide conjugated with rhodamine increase rhodamine toxicity in E. coli and zebrafish embryo. J Chin Chem Soc 2021;68:34-8. [DOI: 10.1002/jccs.202000358] [Reference Citation Analysis]