1 |
Sharma R, Suhendra NF, Lee H. Hydrogen sulfide detection induced burst release of model drug from polymeric micelles. Sensors and Actuators B: Chemical 2023;382:133570. [DOI: 10.1016/j.snb.2023.133570] [Reference Citation Analysis]
|
2 |
Ren B, Liu R, He Q, Wu T, Song L, Wang H, Gu J. Stimulus-Responsive Zwitterionic Prodrug Delivery System with Sustained Release of Hydrogen Sulfide for Protective Aortic Dissection. ACS Appl Mater Interfaces 2023. [PMID: 36759500 DOI: 10.1021/acsami.2c21460] [Reference Citation Analysis]
|
3 |
Yuan D, Chu J, Lin H, Zhu G, Qian J, Yu Y, Yao T, Ping F, Chen F, Liu X. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med 2022;9:1109445. [PMID: 36727029 DOI: 10.3389/fcvm.2022.1109445] [Reference Citation Analysis]
|
4 |
Ge Y, Rong F, Li W, Wang Y. On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022;352:586-99. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Reference Citation Analysis]
|
5 |
Yang C, Li X, Yan Q. Polythionoester Vesicle: An Efficient Polymeric Platform for Tuning H2S Release. ACS Macro Lett 2022;:1230-7. [PMID: 36223277 DOI: 10.1021/acsmacrolett.2c00473] [Reference Citation Analysis]
|
6 |
Yao T, van Nunen T, Rivero R, Powell C, Carrazzone R, Kessels L, Wieringa PA, Hafeez S, Wolfs TGAM, Moroni L, Matson JB, Baker MB. Electrospun Scaffolds Functionalized with a Hydrogen Sulfide Donor Stimulate Angiogenesis. ACS Appl Mater Interfaces 2022. [PMID: 35715217 DOI: 10.1021/acsami.2c06686] [Reference Citation Analysis]
|
7 |
Xia W, Yan T, Wen L, Zhu S, Yin W, Zhu M, Lang M, Wang C, Guo C. Hypothermia-Triggered Mesoporous Silica Particles for Controlled Release of Hydrogen Sulfide to Reduce the I/R Injury of the Myocardium. ACS Biomater Sci Eng 2022. [PMID: 35671486 DOI: 10.1021/acsbiomaterials.2c00266] [Reference Citation Analysis]
|
8 |
Rong F, Wang T, Wang K, Zhou Q, Peng H, Li P. Core-Cross-Linking of Polymeric Micelles by Di-para-Substituted S-Aroylthiooximes as Linkers for Controlled H2S Release. ACS Macro Lett 2022;11:622-9. [PMID: 35570816 DOI: 10.1021/acsmacrolett.2c00137] [Reference Citation Analysis]
|
9 |
Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2022;11:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
10 |
Carrazzone RJ, Li X, Foster JC, Uppala VVS, Wall CE, Esker AR, Madsen LA, Matson JB. Strong Variation of Micelle-Unimer Coexistence as a Function of Core Chain Mobility. Macromolecules 2021;54:6975-81. [PMID: 36910585 DOI: 10.1021/acs.macromol.1c00635] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
11 |
Williams ER, Mcmahon PL, Reynolds JE, Snider JL, Stavila V, Allendorf MD, Stefik M. Tailored porous carbons enabled by persistent micelles with glassy cores. Mater Adv 2021;2:5381-95. [DOI: 10.1039/d1ma00146a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Carrazzone RJ, Foster JC, Li Z, Matson JB. Tuning small molecule release from polymer micelles: Varying H2S release through cross linking in the micelle core. Eur Polym J 2020;141:110077. [PMID: 33162563 DOI: 10.1016/j.eurpolymj.2020.110077] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
13 |
Wang F, Su H, Lin R, Chakroun RW, Monroe MK, Wang Z, Porter M, Cui H. Supramolecular Tubustecan Hydrogel as Chemotherapeutic Carrier to Improve Tumor Penetration and Local Treatment Efficacy. ACS Nano 2020;14:10083-94. [PMID: 32806082 DOI: 10.1021/acsnano.0c03286] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
|
14 |
Chen JJY, van der Vlies AJ, Hasegawa U. Hydrogen sulfide-releasing micelles for promoting angiogenesis. Polym Chem 2020;11:4454-63. [PMID: 33796157 DOI: 10.1039/d0py00495b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
15 |
Urquhart MC, Dao NV, Ercole F, Boyd BJ, Davis TP, Whittaker MR, Quinn JF. Polymers with Dithiobenzoate End Groups Constitutively Release Hydrogen Sulfide upon Exposure to Cysteine and Homocysteine. ACS Macro Lett 2020;9:553-7. [PMID: 35648511 DOI: 10.1021/acsmacrolett.0c00066] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
16 |
Dillon KM, Carrazzone RJ, Matson JB, Kashfi K. The evolving landscape for cellular nitric oxide and hydrogen sulfide delivery systems: A new era of customized medications. Biochem Pharmacol 2020;176:113931. [PMID: 32224139 DOI: 10.1016/j.bcp.2020.113931] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
|
17 |
Kaur K, Wang Y, Matson JB. Linker-Regulated H2S Release from Aromatic Peptide Amphiphile Hydrogels. Biomacromolecules 2020;21:1171-8. [PMID: 32053359 DOI: 10.1021/acs.biomac.9b01600] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
18 |
Kaur K, Carrazzone RJ, Matson JB. The Benefits of Macromolecular/Supramolecular Approaches in Hydrogen Sulfide Delivery: A Review of Polymeric and Self-Assembled Hydrogen Sulfide Donors. Antioxid Redox Signal 2020;32:79-95. [PMID: 31691577 DOI: 10.1089/ars.2019.7864] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
|