1 |
Haider MS, Mahato AK, Kotliarova A, Forster S, Böttcher B, Stahlhut P, Sidorova Y, Luxenhofer R. Biological Activity In Vitro, Absorption, BBB Penetration, and Tolerability of Nanoformulation of BT44:RET Agonist with Disease-Modifying Potential for the Treatment of Neurodegeneration. Biomacromolecules 2022. [PMID: 36219820 DOI: 10.1021/acs.biomac.2c00761] [Reference Citation Analysis]
|
2 |
Pavliuk MV, Wrede S, Liu A, Brnovic A, Wang S, Axelsson M, Tian H. Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production. Chem Soc Rev . [DOI: 10.1039/d2cs00356b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Papagiannopoulos A, Sentoukas T, Pispas S, Radulescu A, Pipich V, Lang C. Length-scale dependence of pH- and temperature-response of PDMAEMA-b-PHPMA block copolymer self-assemblies in aqueous solutions. Polymer 2022;239:124428. [DOI: 10.1016/j.polymer.2021.124428] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
4 |
Ye Z, Wu Z, Jayaraman A. Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) on Vesicles Assembled from Amphiphilic Macromolecular Solutions. JACS Au 2021;1:1925-36. [PMID: 34841410 DOI: 10.1021/jacsau.1c00305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
5 |
Schmid AJ, Wiehemeier L, Jaksch S, Schneider H, Hiess A, Bögershausen T, Widmann T, Reitenbach J, Kreuzer LP, Kühnhammer M, Löhmann O, Brandl G, Frielinghaus H, Müller-buschbaum P, von Klitzing R, Hellweg T. Flexible Sample Environments for the Investigation of Soft Matter at the European Spallation Source: Part I—The In Situ SANS/DLS Setup. Applied Sciences 2021;11:4089. [DOI: 10.3390/app11094089] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
6 |
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021;10:e2001382. [PMID: 33448122 DOI: 10.1002/adhm.202001382] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
|
7 |
Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem 2021;133:2230-2234. [DOI: 10.1002/ange.202010934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
8 |
Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem Int Ed 2021;60:2202-6. [DOI: 10.1002/anie.202010934] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
9 |
Haider MS, Lübtow MM, Endres S, Forster S, Flegler VJ, Böttcher B, Aseyev V, Pöppler A, Luxenhofer R. Think Beyond the Core: Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles. ACS Appl Mater Interfaces 2020;12:24531-43. [DOI: 10.1021/acsami.9b22495] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 9.7] [Reference Citation Analysis]
|
10 |
Grüne M, Luxenhofer R, Iuga D, Brown SP, Pöppler A. 14 N– 1 H HMQC solid-state NMR as a powerful tool to study amorphous formulations – an exemplary study of paclitaxel loaded polymer micelles. J Mater Chem B 2020;8:6827-36. [DOI: 10.1039/d0tb00614a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
|