BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Matthew AN, Zephyr J, Hill CJ, Jahangir M, Newton A, Petropoulos CJ, Huang W, Kurt-Yilmaz N, Schiffer CA, Ali A. Hepatitis C Virus NS3/4A Protease Inhibitors Incorporating Flexible P2 Quinoxalines Target Drug Resistant Viral Variants. J Med Chem 2017;60:5699-716. [PMID: 28594175 DOI: 10.1021/acs.jmedchem.7b00426] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. Chinese Chemical Letters 2020;31:1695-708. [DOI: 10.1016/j.cclet.2020.03.028] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 17.5] [Reference Citation Analysis]
2 Zhou J, Fang L, Yang Z, Xu S, Lv M, Sun Z, Chen J, Wang D, Gao J, Xiao S. Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach. FASEB J 2019;33:14575-87. [PMID: 31690127 DOI: 10.1096/fj.201901624RR] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
3 Talevi A. Drug repositioning: current approaches and their implications in the precision medicine era. Expert Review of Precision Medicine and Drug Development 2018;3:49-61. [DOI: 10.1080/23808993.2018.1424535] [Cited by in Crossref: 25] [Cited by in F6Publishing: 7] [Article Influence: 6.3] [Reference Citation Analysis]
4 Matthew AN, Leidner F, Newton A, Petropoulos CJ, Huang W, Ali A, KurtYilmaz N, Schiffer CA. Molecular Mechanism of Resistance in a Clinically Significant Double-Mutant Variant of HCV NS3/4A Protease. Structure 2018;26:1360-1372.e5. [PMID: 30146168 DOI: 10.1016/j.str.2018.07.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
5 An L, Xiao YL, Zhang S, Zhang X. Bulky Diamine Ligand Promotes Cross-Coupling of Difluoroalkyl Bromides by Iron Catalysis. Angew Chem Int Ed Engl 2018;57:6921-5. [PMID: 29667283 DOI: 10.1002/anie.201802713] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 10.8] [Reference Citation Analysis]
6 An L, Tong F, Zhang S, Zhang X. Stereoselective Functionalization of Racemic Cyclopropylzinc Reagents via Enantiodivergent Relay Coupling. J Am Chem Soc 2020;142:11884-92. [DOI: 10.1021/jacs.0c04462] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
7 He X, Gao X, Zhang X. Nickel-Catalyzed Difluoroalkylation of (Hetero)aryl Bromides with Unactivated 1-Bromo-1,1-difluoroalkanes: Nickel-Catalyzed Difluoroalkylation of (Hetero)aryl Bromides with Unactivated 1-Bromo-1,1-difluoroalkanes . Chin J Chem 2018;36:1059-62. [DOI: 10.1002/cjoc.201800276] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
8 An L, Xiao Y, Zhang S, Zhang X. Bulky Diamine Ligand Promotes Cross-Coupling of Difluoroalkyl Bromides by Iron Catalysis. Angew Chem 2018;130:7037-41. [DOI: 10.1002/ange.201802713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
9 Olanders G, Brandt P, Sköld C, Karlén A. Computational studies of molecular pre-organization through macrocyclization: Conformational distribution analysis of closely related non-macrocyclic and macrocyclic analogs. Bioorg Med Chem 2021;49:116399. [PMID: 34601455 DOI: 10.1016/j.bmc.2021.116399] [Reference Citation Analysis]
10 Boonma T, Nutho B, Darai N, Rungrotmongkol T, Nunthaboot N. Exploring of paritaprevir and glecaprevir resistance due to A156T mutation of HCV NS3/4A protease: molecular dynamics simulation study. J Biomol Struct Dyn 2021;:1-12. [PMID: 33430709 DOI: 10.1080/07391102.2020.1869587] [Reference Citation Analysis]
11 Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Rao DN, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Kurt Yilmaz N, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021;121:3238-70. [PMID: 33410674 DOI: 10.1021/acs.chemrev.0c00648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Zephyr J, Nageswara Rao D, Vo SV, Henes M, Kosovrasti K, Matthew AN, Hedger AK, Timm J, Chan ET, Ali A, Kurt Yilmaz N, Schiffer CA. Deciphering the Molecular Mechanism of HCV Protease Inhibitor Fluorination as a General Approach to Avoid Drug Resistance. Journal of Molecular Biology 2022. [DOI: 10.1016/j.jmb.2022.167503] [Reference Citation Analysis]
13 Ito M, Nakagawa T, Higuchi K, Sugiyama S. Dirhodium(ii)-catalyzed ortho C-H amination of sterically congested N,N-dialkylanilines. Org Biomol Chem 2018;16:6876-81. [PMID: 30229789 DOI: 10.1039/c8ob01974f] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
14 Rusere LN, Matthew AN, Lockbaum GJ, Jahangir M, Newton A, Petropoulos CJ, Huang W, Kurt Yilmaz N, Schiffer CA, Ali A. Quinoxaline-Based Linear HCV NS3/4A Protease Inhibitors Exhibit Potent Activity against Drug Resistant Variants. ACS Med Chem Lett 2018;9:691-6. [PMID: 30034602 DOI: 10.1021/acsmedchemlett.8b00150] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
15 Matthew AN, Zephyr J, Nageswara Rao D, Henes M, Kamran W, Kosovrasti K, Hedger AK, Lockbaum GJ, Timm J, Ali A, Kurt Yilmaz N, Schiffer CA. Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors. mBio 2020;11:e00172-20. [PMID: 32234812 DOI: 10.1128/mBio.00172-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Nageswara Rao D, Zephyr J, Henes M, Chan ET, Matthew AN, Hedger AK, Conway HL, Saeed M, Newton A, Petropoulos CJ, Huang W, Kurt Yilmaz N, Schiffer CA, Ali A. Discovery of Quinoxaline-Based P1-P3 Macrocyclic NS3/4A Protease Inhibitors with Potent Activity against Drug-Resistant Hepatitis C Virus Variants. J Med Chem 2021;64:11972-89. [PMID: 34405680 DOI: 10.1021/acs.jmedchem.1c00554] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Zephyr J, Kurt Yilmaz N, Schiffer CA. Viral proteases: Structure, mechanism and inhibition. Enzymes 2021;50:301-33. [PMID: 34861941 DOI: 10.1016/bs.enz.2021.09.004] [Reference Citation Analysis]
18 Ezat AA, Elshemey WM. A comparative study of the efficiency of HCV NS3/4A protease drugs against different HCV genotypes using in silico approaches. Life Sci 2019;217:176-84. [PMID: 30528183 DOI: 10.1016/j.lfs.2018.12.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 Boonma T, Nutho B, Rungrotmongkol T, Nunthaboot N. Understanding of the drug resistance mechanism of hepatitis C virus NS3/4A to paritaprevir due to D168N/Y mutations: A molecular dynamics simulation perspective. Comput Biol Chem 2019;83:107154. [PMID: 31751885 DOI: 10.1016/j.compbiolchem.2019.107154] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Özen A, Prachanronarong K, Matthew AN, Soumana DI, Schiffer CA. Resistance outside the substrate envelope: hepatitis C NS3/4A protease inhibitors. Crit Rev Biochem Mol Biol 2019;54:11-26. [PMID: 30821513 DOI: 10.1080/10409238.2019.1568962] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
21 Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev 2021;50:4514-40. [PMID: 33595031 DOI: 10.1039/d0cs01084g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
22 Montana M, Montero V, Khoumeri O, Vanelle P. Quinoxaline Derivatives as Antiviral Agents: A Systematic Review. Molecules 2020;25:E2784. [PMID: 32560203 DOI: 10.3390/molecules25122784] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
23 Sun LQ, Mull E, D'Andrea S, Zheng B, Hiebert S, Gillis E, Bowsher M, Kandhasamy S, Baratam VR, Puttaswamy S, Pulicharla N, Vishwakrishnan S, Reddy S, Trivedi R, Sinha S, Sivaprasad S, Rao A, Desai S, Ghosh K, Anumula R, Kumar A, Rajamani R, Wang YK, Fang H, Mathur A, Rampulla R, Zvyaga TA, Mosure K, Jenkins S, Falk P, Tagore DM, Chen C, Rendunchintala K, Loy J, Meanwell NA, McPhee F, Scola PM. Discovery of BMS-986144, a Third-Generation, Pan-Genotype NS3/4A Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. J Med Chem 2020;63:14740-60. [PMID: 33226226 DOI: 10.1021/acs.jmedchem.0c01296] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Scott JS, Breed J, Carbajo RJ, Davey PR, Greenwood R, Huynh HK, Klinowska T, Morrow CJ, Moss TA, Polanski R, Nissink JWM, Varnes J, Yang B. Building Bridges in a Series of Estrogen Receptor Degraders: An Application of Metathesis in Medicinal Chemistry. ACS Med Chem Lett 2019;10:1492-7. [PMID: 31620239 DOI: 10.1021/acsmedchemlett.9b00370] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
25 Song H, Cheng R, Min QQ, Zhang X. Decarboxylative and Deaminative Alkylation of Difluoroenoxysilanes via Photoredox Catalysis: A General Method for Site-Selective Synthesis of Difluoroalkylated Alkanes. Org Lett 2020;22:7747-51. [PMID: 32946242 DOI: 10.1021/acs.orglett.0c02997] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 9.5] [Reference Citation Analysis]