1 |
Fassi EMA, Manenti M, Citarella A, Dei Cas M, Casati S, Micale N, Schirmeister T, Roda G, Silvani A, Grazioso G. Computational Design, Synthesis, and Biophysical Evaluation of β-Amido Boronic Acids as SARS-CoV-2 M(pro) Inhibitors. Molecules 2023;28. [PMID: 36903597 DOI: 10.3390/molecules28052356] [Reference Citation Analysis]
|
2 |
Srivastav AK, Jaiswal J, Kumar U. In silico bioprospecting of antiviral compounds from marine fungi and mushroom for rapid development of nutraceuticals against SARS-CoV-2. J Biomol Struct Dyn 2023;41:1574-85. [PMID: 34971338 DOI: 10.1080/07391102.2021.2023048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
3 |
Pradhan R, Sahu PK. In-silico approaches towards development of model irreversible HIV-1 protease inhibitors.. [DOI: 10.21203/rs.3.rs-2547106/v1] [Reference Citation Analysis]
|
4 |
Previti S, Ettari R, Calcaterra E, Di Maro S, Hammerschmidt SJ, Müller C, Ziebuhr J, Schirmeister T, Cosconati S, Zappalà M. Structure-based lead optimization of peptide-based vinyl methyl ketones as SARS-CoV-2 main protease inhibitors. Eur J Med Chem 2023;247:115021. [PMID: 36549112 DOI: 10.1016/j.ejmech.2022.115021] [Reference Citation Analysis]
|
5 |
Citarella A, Moi D, Pedrini M, Pérez-Peña H, Pieraccini S, Stagno C, Micale N, Schirmeister T, Sibille G, Gribaudo G, Silvani A, Passarella D, Giannini C. Discovery of a Novel Trifluoromethyl Diazirine Inhibitor of SARS-CoV-2 M(pro). Molecules 2023;28. [PMID: 36677572 DOI: 10.3390/molecules28020514] [Reference Citation Analysis]
|
6 |
Gayatri SK, Chhabra V, Kumar H, Sobhia ME. Identification of prospective covalent inhibitors for SARS-CoV-2 main protease using structure-based approach. J Biomol Struct Dyn 2022;:1-18. [PMID: 36200615 DOI: 10.1080/07391102.2022.2129453] [Reference Citation Analysis]
|
7 |
La Monica G, Bono A, Lauria A, Martorana A. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem 2022. [PMID: 36169610 DOI: 10.1021/acs.jmedchem.2c01005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
8 |
Oyedele AK, Ogunlana AT, Boyenle ID, Adeyemi AO, Rita TO, Adelusi TI, Abdul-Hammed M, Elegbeleye OE, Odunitan TT. Docking covalent targets for drug discovery: stimulating the computer-aided drug design community of possible pitfalls and erroneous practices. Mol Divers 2022. [PMID: 36057867 DOI: 10.1007/s11030-022-10523-4] [Reference Citation Analysis]
|
9 |
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022;122:11287-368. [PMID: 35594413 DOI: 10.1021/acs.chemrev.1c00965] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
|
10 |
Previti S, Ettari R, Calcaterra E, Di Chio C, Ravichandran R, Zimmer C, Hammerschmidt S, Wagner A, Bogacz M, Cosconati S, Schirmeister T, Zappalà M. Development of Urea-Bond-Containing Michael Acceptors as Antitrypanosomal Agents Targeting Rhodesain. ACS Med Chem Lett . [DOI: 10.1021/acsmedchemlett.2c00084] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
11 |
Vázquez-mendoza LH, Mendoza-figueroa HL, García-vázquez JB, Correa-basurto J, García-machorro J. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. IJMS 2022;23:3987. [DOI: 10.3390/ijms23073987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
12 |
El Khoury L, Jing Z, Cuzzolin A, Deplano A, Loco D, Sattarov B, Hédin F, Wendeborn S, Ho C, El Ahdab D, Jaffrelot Inizan T, Sturlese M, Sosic A, Volpiana M, Lugato A, Barone M, Gatto B, Macchia ML, Bellanda M, Battistutta R, Salata C, Kondratov I, Iminov R, Khairulin A, Mykhalonok Y, Pochepko A, Chashka-Ratushnyi V, Kos I, Moro S, Montes M, Ren P, Ponder JW, Lagardère L, Piquemal JP, Sabbadin D. Computationally driven discovery of SARS-CoV-2 Mpro inhibitors: from design to experimental validation. Chem Sci 2022;13:3674-87. [PMID: 35432906 DOI: 10.1039/d1sc05892d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
13 |
Semenov VA, Krivdin LB. Combined Computational NMR and Molecular Docking Scrutiny of Potential Natural SARS-CoV-2 Mpro Inhibitors. J Phys Chem B 2022. [PMID: 35271277 DOI: 10.1021/acs.jpcb.1c10489] [Reference Citation Analysis]
|
14 |
Xiong M, Nie T, Shao Q, Li M, Su H, Xu Y. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114130] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
15 |
Spiegel J, Senderowitz H. A Comparison between Enrichment Optimization Algorithm (EOA)-Based and Docking-Based Virtual Screening. IJMS 2021;23:43. [DOI: 10.3390/ijms23010043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
16 |
Tam NM, Pham DH, Hiep DM, Tran PT, Quang DT, Ngo ST. Searching and designing potential inhibitors for SARS-CoV-2 Mpro from natural sources using atomistic and deep-learning calculations. RSC Adv 2021;11:38495-504. [PMID: 35493244 DOI: 10.1039/d1ra06534c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Luo YL. Mechanism-Based and Computational-Driven Covalent Drug Design. J Chem Inf Model 2021;61:5307-11. [PMID: 34757749 DOI: 10.1021/acs.jcim.1c01278] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
18 |
Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Ojeda-Montes MJ, Gimeno A, Cereto-Massagué A, Garcia-Vallvé S, Pujadas G. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Med Res Rev 2021. [PMID: 34697818 DOI: 10.1002/med.21862] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
|
19 |
Maus H, Barthels F, Hammerschmidt SJ, Kopp K, Millies B, Gellert A, Ruggieri A, Schirmeister T. SAR of novel benzothiazoles targeting an allosteric pocket of DENV and ZIKV NS2B/NS3 proteases. Bioorg Med Chem 2021;47:116392. [PMID: 34509861 DOI: 10.1016/j.bmc.2021.116392] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Yang J, Lin X, Xing N, Zhang Z, Zhang H, Wu H, Xue W. Structure-Based Discovery of Novel Nonpeptide Inhibitors Targeting SARS-CoV-2 Mpro. J Chem Inf Model 2021;61:3917-26. [PMID: 34279924 DOI: 10.1021/acs.jcim.1c00355] [Cited by in Crossref: 20] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
|
21 |
Karpiński TM, Kwaśniewski M, Ożarowski M, Alam R. In silico studies of selected xanthophylls as potential candidates against SARS-CoV-2 targeting main protease (Mpro) and papain-like protease (PLpro). Herba Polonica 2021;67:1-8. [DOI: 10.2478/hepo-2021-0009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
22 |
Rusu A, Arbănaşi E, Lungu I, Moldovan O. Perspectives on Antiviral Drugs Development in the Treatment of COVID-19. Acta Biologica Marisiensis 2021;4:44-59. [DOI: 10.2478/abmj-2021-0005] [Reference Citation Analysis]
|
23 |
Hammerschmidt SJ, Müller P, Schirmeister T. SARS-CoV-PLpro-Inhibitoren als mögliche Breitspektrum-Virostatika. Biospektrum 2021;27:254-256. [DOI: 10.1007/s12268-021-1576-6] [Reference Citation Analysis]
|