BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu N, Chu J, Wang M, Chen L, Zhang L, Xie Z, Zhang J, Ho CT, Li D, Wan X. Large Yellow Tea Attenuates Macrophage-Related Chronic Inflammation and Metabolic Syndrome in High-Fat Diet Treated Mice. J Agric Food Chem 2018;66:3823-32. [PMID: 29553261 DOI: 10.1021/acs.jafc.8b00138] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhai X, Hu Y, Pei Z, Yu J, Li M, Zhang L, Ho CT, Zhang Y, Wan X. Insights into the Key Odorants in Large-Leaf Yellow Tea (Camellia sinensis) by Application of the Sensomics Approach. J Agric Food Chem 2023;71:690-9. [PMID: 36573803 DOI: 10.1021/acs.jafc.2c05881] [Reference Citation Analysis]
2 Wang Z, Li Y, Qian C, Feng B, Xiong G, Jiang J, Chen Q. Processing quality and aroma characteristics of fresh noodles intermingled with large-leaf yellow tea powder. LWT 2022. [DOI: 10.1016/j.lwt.2022.114391] [Reference Citation Analysis]
3 Yang C, Cui C, Zhu Y, Xia X, Jin G, Liu C, Li Y, Xue X, Hou R. Effect of brewing conditions on the chemical and sensory profiles of milk tea. Food Chemistry: X 2022;16:100453. [DOI: 10.1016/j.fochx.2022.100453] [Reference Citation Analysis]
4 Ye W, Wen C, Zeng A, Hu X. Increased levels of circulating oxidized mitochondrial DNA contribute to chronic inflammation in metabolic syndrome, and MitoQ-based antioxidant therapy alleviates this DNA-induced inflammation. Molecular and Cellular Endocrinology 2022. [DOI: 10.1016/j.mce.2022.111812] [Reference Citation Analysis]
5 Wang H, Xu S, Li D, Xie Z. Structural Characterization and Macrophage Polarization-Modulating Activity of a Novel Polysaccharide from Large Yellow Tea. J Agric Food Chem 2022. [PMID: 36154025 DOI: 10.1021/acs.jafc.2c05593] [Reference Citation Analysis]
6 Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L, Wang J. Baicalein Prevents Fructose-Induced Hepatic Steatosis in Rats: In the Regulation of Fatty Acid De Novo Synthesis, Fatty Acid Elongation and Fatty Acid Oxidation. Front Pharmacol 2022;13:917329. [DOI: 10.3389/fphar.2022.917329] [Reference Citation Analysis]
7 Qin C, Lian L, Xu W, Jiang Z, Wen M, Han Z, Zhang L. Comparison of the chemical composition and antioxidant, anti-inflammatory, α-amylase and α-glycosidase inhibitory activities of the supernatant and cream from black tea infusion. Food Funct 2022;13:6139-51. [PMID: 35579412 DOI: 10.1039/d2fo00707j] [Reference Citation Analysis]
8 Wu Y, Han Z, Wen M, Ho C, Jiang Z, Wang Y, Xu N, Xie Z, Zhang J, Zhang L, Wan X. Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry. Food Science and Human Wellness 2022;11:627-34. [DOI: 10.1016/j.fshw.2021.12.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zong S, Wang H, Li J, Liu J, Jin C. Chemical compositions, anti-oxidant and anti-inflammatory potential of ethanol extract from Zhuke-Hulu tea. Food Bioscience 2021;44:101351. [DOI: 10.1016/j.fbio.2021.101351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
10 Chen YT, Chiou SY, Hsu AH, Lin YC, Lin JS. Lactobacillus rhamnosus Strain LRH05 Intervention Ameliorated Body Weight Gain and Adipose Inflammation via Modulating the Gut Microbiota in High-Fat Diet-Induced Obese Mice. Mol Nutr Food Res 2022;66:e2100348. [PMID: 34796638 DOI: 10.1002/mnfr.202100348] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
11 Xu XY, Zhao CN, Li BY, Tang GY, Shang A, Gan RY, Feng YB, Li HB. Effects and mechanisms of tea on obesity. Crit Rev Food Sci Nutr 2021;:1-18. [PMID: 34704503 DOI: 10.1080/10408398.2021.1992748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
12 Shi Y, Wang M, Dong Z, Zhu Y, Shi J, Ma W, Lin Z, Lv H. Volatile components and key odorants of Chinese yellow tea (Camellia sinensis). LWT 2021;146:111512. [DOI: 10.1016/j.lwt.2021.111512] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
13 Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Gajda P, Jaromin A, Czopek A, Zagórska A, Tyliszczak B. Synthesis and Physicochemical Evaluation of Bees' Chitosan-Based Hydrogels Modified with Yellow Tea Extract. Materials (Basel) 2021;14:3379. [PMID: 34207214 DOI: 10.3390/ma14123379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Lin N, Liu X, Zhu W, Cheng X, Wang X, Wan X, Liu L. Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis. J Agric Food Chem 2021;69:3401-14. [PMID: 33719437 DOI: 10.1021/acs.jafc.0c07009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
15 Martín MÁ, Ramos S. Impact of Dietary Flavanols on Microbiota, Immunity and Inflammation in Metabolic Diseases. Nutrients 2021;13:850. [PMID: 33807621 DOI: 10.3390/nu13030850] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
16 Guo X, Ho CT, Schwab W, Wan X. Effect of the roasting degree on flavor quality of large-leaf yellow tea. Food Chem 2021;347:129016. [PMID: 33486364 DOI: 10.1016/j.foodchem.2021.129016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
17 Xu N, Chu J, Dong R, Lu F, Zhang X, Wang M, Shen Y, Xie Z, Ho C, Yang CS, Wang Y, Wan X. Yellow Tea Stimulates Thermogenesis in Mice through Heterogeneous Browning of Adipose Tissues. Mol Nutr Food Res 2021;65:2000864. [DOI: 10.1002/mnfr.202000864] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Wang X, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China, Zhu W, Cheng X, Lu Z, Liu X, Wan X, Song C, Liu L. The effects of circadian rhythm on catechin accumulation in tea leaves. Beverage Plant Research 2021;1:1-9. [DOI: 10.48130/bpr-2021-0008] [Reference Citation Analysis]
19 Sun Y, Wang L, Shaughnessy LK, Lin Y, Xu Q, Shi X, Zhang L, Yu R, Xiao H, Wan X, Wu X. Exploring the Antihyperglycemic Chemical Composition and Mechanisms of Tea Using Molecular Docking. Evid Based Complement Alternat Med 2020;2020:8871088. [PMID: 33343682 DOI: 10.1155/2020/8871088] [Reference Citation Analysis]
20 Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020;64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Wang H, Chen J, Ren P, Zhang Y, Omondi Onyango S. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide. Ultrason Sonochem 2021;70:105355. [PMID: 33007535 DOI: 10.1016/j.ultsonch.2020.105355] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
22 Lee MR, Kim JE, Park JW, Kang MJ, Choi HJ, Bae SJ, Choi YW, Kim KM, Hong JT, Hwang DY. Fermented mulberry (Morus alba) leaves suppress high fat diet-induced hepatic steatosis through amelioration of the inflammatory response and autophagy pathway. BMC Complement Med Ther 2020;20:283. [PMID: 32948162 DOI: 10.1186/s12906-020-03076-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
23 An R, Wen S, Li DL, Li QH, Lai XF, Zhang WJ, Chen RH, Cao JX, Li ZG, Huang QS, Sun LL, Sun SL. Mixtures of Tea and Citrus maxima (pomelo) Alleviate Lipid Deposition in HepG2 Cells Through the AMPK/ACC Signaling Pathway. J Med Food 2020;23:943-51. [PMID: 32721265 DOI: 10.1089/jmf.2020.4706] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
24 Wei L, Zhao C, Dong S, Yao S, Ji B, Zhao B, Liu Z, Liu X, Wang Y. Secoisolariciresinol diglucoside alleviates hepatic lipid metabolic misalignment involving the endoplasmic reticulum-mitochondrial axis. Food Funct 2020;11:3952-63. [PMID: 32426795 DOI: 10.1039/d0fo00124d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
25 Sánchez M, González-Burgos E, Iglesias I, Lozano R, Gómez-Serranillos MP. The Pharmacological Activity of Camellia sinensis (‎L.‎) ‎Kuntze‎ on Metabolic and Endocrine Disorders: A Systematic Review. Biomolecules 2020;10:E603. [PMID: 32294991 DOI: 10.3390/biom10040603] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
26 Kotzé-hörstmann LM, Sadie-van Gijsen H. Modulation of Glucose Metabolism by Leaf Tea Constituents: A Systematic Review of Recent Clinical and Pre-clinical Findings. J Agric Food Chem 2020;68:2973-3005. [DOI: 10.1021/acs.jafc.9b07852] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
27 Ray A, Acharya D. Adiponectin-enhancing dietary constituents in cancer prevention. Functional Foods in Cancer Prevention and Therapy 2020. [DOI: 10.1016/b978-0-12-816151-7.00005-3] [Reference Citation Analysis]
28 Wüpper S, Fischer A, Lüersen K, Lucius R, Okamoto H, Ishida Y, Terao K, Rimbach G. High Dietary Kuding Tea Extract Supplementation Induces Hepatic Xenobiotic-Metabolizing Enzymes-A 6-Week Feeding Study in Mice. Nutrients 2019;12:E40. [PMID: 31877869 DOI: 10.3390/nu12010040] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
29 Liu D, Huang J, Luo Y, Wen B, Wu W, Zeng H, Zhonghua L. Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota. J Agric Food Chem 2019;67:13589-604. [DOI: 10.1021/acs.jafc.9b05833] [Cited by in Crossref: 58] [Cited by in F6Publishing: 64] [Article Influence: 14.5] [Reference Citation Analysis]
30 Meng JM, Cao SY, Wei XL, Gan RY, Wang YF, Cai SX, Xu XY, Zhang PZ, Li HB. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants (Basel) 2019;8:E170. [PMID: 31185622 DOI: 10.3390/antiox8060170] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 17.3] [Reference Citation Analysis]
31 Guo X, Ho C, Schwab W, Song C, Wan X. Aroma compositions of large-leaf yellow tea and potential effect of theanine on volatile formation in tea. Food Chemistry 2019;280:73-82. [DOI: 10.1016/j.foodchem.2018.12.066] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 11.5] [Reference Citation Analysis]
32 Zhou J, Zhang L, Meng Q, Wang Y, Long P, Ho CT, Cui C, Cao L, Li D, Wan X. Roasting improves the hypoglycemic effects of a large-leaf yellow tea infusion by enhancing the levels of epimerized catechins that inhibit α-glucosidase. Food Funct 2018;9:5162-8. [PMID: 30246823 DOI: 10.1039/c8fo01429a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
33 Zhou J, Wu Y, Long P, Ho C, Wang Y, Kan Z, Cao L, Zhang L, Wan X. LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea. J Agric Food Chem 2019;67:5405-12. [DOI: 10.1021/acs.jafc.8b05062] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 13.0] [Reference Citation Analysis]