BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Meador JP, Nahrgang J. Characterizing Crude Oil Toxicity to Early-Life Stage Fish Based On a Complex Mixture: Are We Making Unsupported Assumptions? Environ Sci Technol 2019;53:11080-92. [PMID: 31503459 DOI: 10.1021/acs.est.9b02889] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Sørhus E, Donald CE, Nakken CL, Perrichon P, Durif CMF, Shema S, Browman HI, Skiftesvik AB, Lie KK, Rasinger JD, Müller MHB, Meier S. Co-exposure to UV radiation and crude oil increases acute embryotoxicity and sublethal malformations in the early life stages of Atlantic haddock (Melanogrammus aeglefinus). Sci Total Environ 2023;859:160080. [PMID: 36375555 DOI: 10.1016/j.scitotenv.2022.160080] [Reference Citation Analysis]
2 Parkerton TF, French-McCay D, de Jourdan B, Lee K, Coelho G. Adopting a toxic unit model paradigm in design, analysis and interpretation of oil toxicity testing. Aquat Toxicol 2023;255:106392. [PMID: 36638632 DOI: 10.1016/j.aquatox.2022.106392] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 French-McCay DP, Parkerton TF, de Jourdan B. Bridging the lab to field divide: Advancing oil spill biological effects models requires revisiting aquatic toxicity testing. Aquat Toxicol 2023;256:106389. [PMID: 36702035 DOI: 10.1016/j.aquatox.2022.106389] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Viganò L, Guzzella L, Marziali L, Mascolo G, Bagnuolo G, Ciannarella R, Roscioli C. The last 50 years of organic contamination of a highly anthropized tributary of the Po River (Italy). Journal of Environmental Management 2023;326:116665. [DOI: 10.1016/j.jenvman.2022.116665] [Reference Citation Analysis]
5 Roy MA, Mohan A, Karasik Y, Tobiason JE, Reckhow DA, Timme-Laragy AR. The Zebrafish (Danio rerio) Embryo Model as a Tool to Assess Drinking Water Treatment Efficacy for Freshwater Impacted by Crude Oil Spill. Environ Toxicol Chem 2022;41:2822-34. [PMID: 36040130 DOI: 10.1002/etc.5472] [Reference Citation Analysis]
6 Perugini G, Edgar M, Lin F, Kennedy CJ, Farrell AP, Gillis TE, Alderman SL. Age matters: comparing life-stage responses to diluted bitumen exposure in coho salmon (Oncorhynchus kisutch). Aquatic Toxicology 2022. [DOI: 10.1016/j.aquatox.2022.106350] [Reference Citation Analysis]
7 Carroll J, Frøysa HG, Vikebø F, Broch OJ, Howell D, Nepstad R, Augustine S, Skeie GM, Bockwoldt M. An annual profile of the impacts of simulated oil spills on the Northeast Arctic cod and haddock fisheries. Marine Pollution Bulletin 2022;184:114207. [DOI: 10.1016/j.marpolbul.2022.114207] [Reference Citation Analysis]
8 Li X, Zou Y, Xuan H, Yang W, Liao G, Wang C, Xiong D. Impact of Physically and Chemically Dispersed Crude Oil on the Antioxidant Defense Capacities and Non-Specific Immune Responses in Sea Cucumber (Apostichopus japonicus). JMSE 2022;10:1544. [DOI: 10.3390/jmse10101544] [Reference Citation Analysis]
9 Folkerts EJ, Snihur KN, Zhang Y, Martin JW, Alessi DS, Goss GG. Embryonic cardio-respiratory impairments in rainbow trout (Oncorhynchus mykiss) following exposure to hydraulic fracturing flowback and produced water. Environmental Pollution 2022. [DOI: 10.1016/j.envpol.2022.119886] [Reference Citation Analysis]
10 Eriksson ANM, Rigaud C, Rokka A, Skaugen M, Lihavainen JH, Vehniäinen ER. Changes in cardiac proteome and metabolome following exposure to the PAHs retene and fluoranthene and their mixture in developing rainbow trout alevins. Sci Total Environ 2022;830:154846. [PMID: 35351515 DOI: 10.1016/j.scitotenv.2022.154846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Araújo APDC, Luz TMD, Rocha TL, Ahmed MAI, Silva DME, Rahman MM, Malafaia G. Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: Perspective study of genotoxicity, mutagenicity, and redox unbalance. J Hazard Mater 2022;432:128691. [PMID: 35334274 DOI: 10.1016/j.jhazmat.2022.128691] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Katz SD, Chen H, Fields DM, Beirne EC, Keyes P, Drozd GT, Aeppli C. Changes in Chemical Composition and Copepod Toxicity during Petroleum Photo-oxidation. Environ Sci Technol 2022;56:5552-62. [PMID: 35435676 DOI: 10.1021/acs.est.2c00251] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Aranguren-Abadía L, Yadetie F, Donald CE, Sørhus E, Myklatun LE, Zhang X, Lie KK, Perrichon P, Nakken CL, Durif C, Shema S, Browman HI, Skiftesvik AB, Goksøyr A, Meier S, Karlsen OA. Photo-enhanced toxicity of crude oil on early developmental stages of Atlantic cod (Gadus morhua). Sci Total Environ 2022;807:150697. [PMID: 34610396 DOI: 10.1016/j.scitotenv.2021.150697] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Heshka NE, Peru KM, Xin Q, Dettman HD, Headley JV. High resolution Orbitrap mass spectrometry analysis of oxidized hydrocarbons found in freshwater following a simulated spill of crude oil. Chemosphere 2021;292:133415. [PMID: 34953875 DOI: 10.1016/j.chemosphere.2021.133415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Meador JP. The fish early-life stage sublethal toxicity syndrome - A high-dose baseline toxicity response. Environ Pollut 2021;291:118201. [PMID: 34740289 DOI: 10.1016/j.envpol.2021.118201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Ireland KS, Milligan-myhre K. Effects of crude oil on juvenile threespine stickleback somatic and immune development.. [DOI: 10.1101/2021.11.17.469020] [Reference Citation Analysis]
17 Córdova-de la Cruz SE, Martínez-Bautista G, Peña-Marín ES, Martínez-García R, Núñez-Nogueira G, Adams RH, Burggren WW, Alvarez-González CA. Morphological and cardiac alterations after crude oil exposure in the early-life stages of the tropical gar (Atractosteus tropicus). Environ Sci Pollut Res Int 2021. [PMID: 34783950 DOI: 10.1007/s11356-021-17208-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Al-Moubarak E, Shiels HA, Zhang Y, Du C, Hanington O, Harmer SC, Dempsey CE, Hancox JC. Inhibition of the hERG potassium channel by phenanthrene: a polycyclic aromatic hydrocarbon pollutant. Cell Mol Life Sci 2021;78:7899-914. [PMID: 34727194 DOI: 10.1007/s00018-021-03967-8] [Reference Citation Analysis]
19 Olsvik PA, Sørhus E, Meier S, Torvanger I, Thorbjørnsen M, Thorsen A, Sørensen L, Fjelldal PG, Karlsen Ø, Guimaraes IG, Lie KK. Ontogeny-Specific Skeletal Deformities in Atlantic Haddock Caused by Larval Oil Exposure. Front Mar Sci 2021;8. [DOI: 10.3389/fmars.2021.726828] [Reference Citation Analysis]
20 DeMiguel-Jiménez L, Etxebarria N, Lekube X, Izagirre U, Marigómez I. Influence of dispersant application on the toxicity to sea urchin embryos of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas. Mar Pollut Bull 2021;172:112922. [PMID: 34523425 DOI: 10.1016/j.marpolbul.2021.112922] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Esteban-sánchez A, Johann S, Bilbao D, Prieto A, Hollert H, Seiler T, Orbea A. Multilevel responses of adult zebrafish to crude and chemically dispersed oil exposure. Environ Sci Eur 2021;33. [DOI: 10.1186/s12302-021-00545-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
22 Gissi F, Strzelecki J, Binet MT, Golding LA, Adams MS, Elsdon TS, Robertson T, Hook SE. A Comparison of Short-Term and Continuous Exposures in Toxicity Tests of Produced Waters, Condensate, and Crude Oil to Marine Invertebrates and Fish. Environ Toxicol Chem 2021;40:2587-600. [PMID: 34033678 DOI: 10.1002/etc.5129] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Ashun E, Toor UA, Kim HS, Kim KR, Park SJ, Hong S, Oh SE. A direct contact bioassay using sulfur-oxidizing bacteria (SOB) for toxicity assessment of contaminated field soils. Chemosphere 2021;286:131599. [PMID: 34315084 DOI: 10.1016/j.chemosphere.2021.131599] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Albarano L, Zupo V, Caramiello D, Toscanesi M, Trifuoggi M, Guida M, Libralato G, Costantini M. Sub-Chronic Effects of Slight PAH- and PCB-Contaminated Mesocosms in Paracentrotus lividus Lmk: A Multi-Endpoint Approach and De Novo Transcriptomic. Int J Mol Sci 2021;22:6674. [PMID: 34206685 DOI: 10.3390/ijms22136674] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Cañizares-Martínez MA, Quintanilla-Mena M, Del-Río-García M, Rivas-Reyes I, Patiño-Suárez MV, Vidal-Martínez VM, Aguirre-Macedo ML, Puch-Hau CA. Acute Exposure to Crude Oil Induces Epigenetic, Transcriptional and Metabolic Changes in Juvenile Sciaenops ocellatus. Bull Environ Contam Toxicol 2021. [PMID: 33914098 DOI: 10.1007/s00128-021-03241-4] [Reference Citation Analysis]
26 Bender ML, Giebichenstein J, Teisrud RN, Laurent J, Frantzen M, Meador JP, Sørensen L, Hansen BH, Reinardy HC, Laurel B, Nahrgang J. Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish. Sci Rep 2021;11:8410. [PMID: 33863955 DOI: 10.1038/s41598-021-87932-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
27 Philibert D, Parkerton T, Marteinson S, de Jourdan B. Assessing the Toxicity of Individual Aromatic Compounds and Mixtures to American Lobster (Homarus americanus) Larvae Using a Passive Dosing System. Environ Toxicol Chem 2021;40:1379-88. [PMID: 33465259 DOI: 10.1002/etc.4988] [Reference Citation Analysis]
28 McGruer V, Tanabe P, Vliet SMF, Dasgupta S, Qian L, Volz DC, Schlenk D. Effects of Phenanthrene Exposure on Cholesterol Homeostasis and Cardiotoxicity in Zebrafish Embryos. Environ Toxicol Chem 2021;40:1586-95. [PMID: 33523501 DOI: 10.1002/etc.5002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Sørhus E, Donald CE, da Silva D, Thorsen A, Karlsen Ø, Meier S. Untangling mechanisms of crude oil toxicity: Linking gene expression, morphology and PAHs at two developmental stages in a cold-water fish. Science of The Total Environment 2021;757:143896. [DOI: 10.1016/j.scitotenv.2020.143896] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
30 Podgorski DC, Zito P, Kellerman AM, Bekins BA, Cozzarelli IM, Smith DF, Cao X, Schmidt-Rohr K, Wagner S, Stubbins A, Spencer RGM. Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes. J Hazard Mater 2021;402:123998. [PMID: 33254831 DOI: 10.1016/j.jhazmat.2020.123998] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
31 Oppegård M, Hansen BH, Sørensen L. Determination of C0 -C9 alkyl phenols in produced-water-exposed fish eggs using gas chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2020;34:e8950. [PMID: 32945058 DOI: 10.1002/rcm.8950] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Lara-Jacobo LR, Gauthier C, Xin Q, Dupont F, Couture P, Triffault-Bouchet G, Dettman HD, Langlois VS. Fate and Fathead Minnow Embryotoxicity of Weathering Crude Oil in a Pilot-Scale Spill Tank. Environ Toxicol Chem 2021;40:127-38. [PMID: 33017057 DOI: 10.1002/etc.4891] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
33 Ali MH, Sattar MT, Khan MI, Naveed M, Rafique M, Alamri S, Siddiqui MH. Enhanced Growth of Mungbean and Remediation of Petroleum Hydrocarbons by Enterobacter sp. MN17 and Biochar Addition in Diesel Contaminated Soil. Applied Sciences 2020;10:8548. [DOI: 10.3390/app10238548] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
34 Hodson P, Wallace S, de Solla S, Head S, Hepditch S, Parrott J, Thomas P, Berthiaume A, Langlois V. Polycyclic aromatic compounds (PACs) in the Canadian environment: The challenges of ecological risk assessments. Environmental Pollution 2020;266:115165. [DOI: 10.1016/j.envpol.2020.115165] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
35 Folkerts EJ, Heuer RM, Flynn S, Stieglitz JD, Benetti DD, Alessi DS, Goss GG, Grosell M. Exposure to Hydraulic Fracturing Flowback Water Impairs Mahi-Mahi ( Coryphaena hippurus ) Cardiomyocyte Contractile Function and Swimming Performance. Environ Sci Technol 2020;54:13579-89. [DOI: 10.1021/acs.est.0c02719] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
36 Dearnley JM, Killeen C, Davis RL, Palace VP, Tomy GT. Monitoring polycyclic aromatic compounds exposure in fish using biliary metabolites. Critical Reviews in Environmental Science and Technology 2022;52:475-519. [DOI: 10.1080/10643389.2020.1825895] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Beyer J, Goksøyr A, Hjermann DØ, Klungsøyr J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. Mar Environ Res 2020;162:105155. [PMID: 32992224 DOI: 10.1016/j.marenvres.2020.105155] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
38 Hook SE. Beyond Thresholds: A Holistic Approach to Impact Assessment Is Needed to Enable Accurate Predictions of Environmental Risk from Oil Spills. Integr Environ Assess Manag 2020;16:813-30. [DOI: 10.1002/ieam.4321] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
39 Sørhus E, Donald CE, da Silva D, Thorsen A, Karlsen Ø, Meier S. Untangling mechanisms of crude oil toxicity: linking gene expression, morphology and PAHs at two developmental stages in a cold-water fish.. [DOI: 10.1101/2020.09.09.288852] [Reference Citation Analysis]
40 Olajuyigbe FM, Adeleye OA, Kolawole AO, Bolarinwa TO, Fasakin EA, Asenuga ER, Ajele JO. Bioremediation treatment improves water quality for Nile tilapia (Oreochromis niloticus) under crude oil pollution. Environ Sci Pollut Res Int 2020;27:25689-702. [PMID: 32350841 DOI: 10.1007/s11356-020-09020-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
41 Johann S, Nüßer L, Goßen M, Hollert H, Seiler TB. Differences in biomarker and behavioral responses to native and chemically dispersed crude and refined fossil oils in zebrafish early life stages. Science of The Total Environment 2020;709:136174. [DOI: 10.1016/j.scitotenv.2019.136174] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
42 Keitel-gröner F, Arnberg M, Bechmann RK, Lyng E, Baussant T. Dispersant application increases adverse long-term effects of oil on shrimp larvae (Pandalus borealis) after a six hour exposure. Marine Pollution Bulletin 2020;151:110892. [DOI: 10.1016/j.marpolbul.2020.110892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]