BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang B, Chen Y, Shi J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem Rev 2019;119:4881-985. [DOI: 10.1021/acs.chemrev.8b00626] [Cited by in Crossref: 886] [Cited by in F6Publishing: 759] [Article Influence: 295.3] [Reference Citation Analysis]
Number Citing Articles
1 Shao M, Wang Y, Dong H, Wang L, Zhang X, Han X, Sang X, Bao Y, Peng M, Cao G. From liver fibrosis to hepatocarcinogenesis: Role of excessive liver H2O2 and targeting nanotherapeutics. Bioactive Materials 2023;23:187-205. [DOI: 10.1016/j.bioactmat.2022.11.001] [Reference Citation Analysis]
2 Xu B, Huang Z, Liu Y, Li S, Liu H. MOF-based nanomedicines inspired by structures of natural active components. Nano Today 2023;48:101690. [DOI: 10.1016/j.nantod.2022.101690] [Reference Citation Analysis]
3 Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews 2023;476:214908. [DOI: 10.1016/j.ccr.2022.214908] [Reference Citation Analysis]
4 Bletsa E, Merkl P, Thersleff T, Normark S, Henriques-normark B, Sotiriou GA. Highly durable photocatalytic titanium suboxide–polymer nanocomposite films with visible light-triggered antibiofilm activity. Chemical Engineering Journal 2023;454:139971. [DOI: 10.1016/j.cej.2022.139971] [Reference Citation Analysis]
5 Li X, Wu T, Zhang Z, Liu S, Cui H, Fan Z, Wang B, Hai J. Tumor microenvironment activated nanoreactors for chemiluminescence imaging-guided simultaneous elimination of breast tumors and tumor-resident intracellular pathogens. Chemical Engineering Journal 2023;453:139939. [DOI: 10.1016/j.cej.2022.139939] [Reference Citation Analysis]
6 Khaksar S, Panjehpour A, Ghadermazi E, Motieiyan E, Aliabadi A, Rostamnia S, Marabello D, Abdolmaleki S. Study on crystallographic structure and antiproliferative effect of mixed-ligand strontium(II) complex and N, Nˊ–bis(2-hydroxy-5-methylphenyl) pyridine-2,6-dicarboxamide ligand. Journal of Molecular Structure 2023;1274:134432. [DOI: 10.1016/j.molstruc.2022.134432] [Reference Citation Analysis]
7 Li Z, Xie H, Shi H, Li D, Zhang Z, Chen H, Gao Y. Triterpenoids and ultrasound dual-catalytic nanoreactor ignites long-lived hypertoxic reactive species storm for deep tumor treatment. Chemical Engineering Journal 2023;453:139938. [DOI: 10.1016/j.cej.2022.139938] [Reference Citation Analysis]
8 Su C, Li C, Li R, Wang W. Insights into highly efficient piezocatalytic molecule oxygen activation over Bi2Fe4O9: Active sites and mechanism. Chemical Engineering Journal 2023;452:139300. [DOI: 10.1016/j.cej.2022.139300] [Reference Citation Analysis]
9 Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coordination Chemistry Reviews 2023;475:214913. [DOI: 10.1016/j.ccr.2022.214913] [Reference Citation Analysis]
10 Zhai X, Cui Z, Shen W. Mechanism, structural design, modulation and applications of Aggregation-induced emission-based Metal-organic framework. Inorganic Chemistry Communications 2022;146:110038. [DOI: 10.1016/j.inoche.2022.110038] [Reference Citation Analysis]
11 Liu T, Zhang J, Lu B, Wang H, Zhan J, Tan X, Wu C, Liu S, Wang Z, Zhang J, Zhang J. Highly efficient conotoxin delivery enabled by a bio-derived ionic liquid. Journal of Molecular Liquids 2022;367:120529. [DOI: 10.1016/j.molliq.2022.120529] [Reference Citation Analysis]
12 Liu J, Huang M, Zhang X, Hua Z, Feng Z, Dong Y, Sun T, Sun X, Chen C. Polyoxometalate nanomaterials for enhanced reactive oxygen species theranostics. Coordination Chemistry Reviews 2022;472:214785. [DOI: 10.1016/j.ccr.2022.214785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yuan K, Huang K, Yang Y, Lin Y, Liu Y, Li F, Liang Y, Chang H, Chen Y, Tang T, Yang S. Multi-roles of nanoscale bismuth metal-organic frameworks: Infectious photoacoustic probe and inhibitor of antibiotics tolerant bacteria via targeting endogenous H2S. Nano Today 2022;47:101683. [DOI: 10.1016/j.nantod.2022.101683] [Reference Citation Analysis]
14 Luo G, Li Z, Zheng J, Yang H, Li X, Guishan X, Duo Y. Recent progresses on radiotherapeutics-based treatment of cancer with two-dimensional nanomaterials. Applied Materials Today 2022;29:101584. [DOI: 10.1016/j.apmt.2022.101584] [Reference Citation Analysis]
15 Zhao H, Li Y, Shi H, Niu M, Li D, Zhang Z, Feng Q, Zhang Y, Wang L. Prodrug nanoparticles potentiate tumor chemo-immunometabolic therapy by disturbing oxidative stress. Journal of Controlled Release 2022;352:909-919. [DOI: 10.1016/j.jconrel.2022.11.011] [Reference Citation Analysis]
16 Hu Q, Hu J, Li H, Fang X, Sun Z, Xu Z, Zhang L. Anti-inflammatory and antioxidant effects of rhein loaded nanomicelles in periodontitis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;654:130164. [DOI: 10.1016/j.colsurfa.2022.130164] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Richezzi M, Palopoli C, Pellegri N, Hureau C, Signorella SR. Synthesis, characterization and superoxide dismutase activity of a biomimetic Mn(III) complex covalently anchored to mesoporous silica. Journal of Inorganic Biochemistry 2022;237:112026. [DOI: 10.1016/j.jinorgbio.2022.112026] [Reference Citation Analysis]
18 He H, Wu J, Liang M, Xiao Y, Wei X, Cao Y, Chen Z, Lin T, Ye M. Cuprous oxide-based nanocrystals with combined chemo/chemodynamic therapy to increase tumor drug sensitivity by reducing mitochondria-derived adenosine-triphosphate. Drug Deliv 2022;29:3134-41. [PMID: 36154354 DOI: 10.1080/10717544.2022.2121450] [Reference Citation Analysis]
19 Li D, Zhuang P, Mei X. Flexible regulation of reactive oxygen species by sustainable cluster drugs. Materials Today Chemistry 2022;26:101093. [DOI: 10.1016/j.mtchem.2022.101093] [Reference Citation Analysis]
20 Fang Y, Zhang Q, Zhang H, Li X, Chen W, Xu J, Shen H, Yang J, Pan C, Zhu Y, Wang J, Luo Z, Wang L, Bai X, Song F, Zhang L, Guo Y. Dual Activation of Molecular Oxygen and Surface Lattice Oxygen in Single Atom Cu 1 /TiO 2 Catalyst for CO Oxidation. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202212273] [Reference Citation Analysis]
21 Zhu L, Chan L, Wang J, Chen M, Cai F, Tian Y, Ma L, Chen T. Selenium-engineered bottom-up-synthesized lanthanide coordination nanoframeworks as efficiency X-ray-responsive radiosensitizers. Nano Res 2022. [DOI: 10.1007/s12274-022-5065-0] [Reference Citation Analysis]
22 Fu Q, Yu L, Wang Y, Li P, Song J. Biomarker‐Responsive Nanosystems for Chronic Disease Theranostics. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202206300] [Reference Citation Analysis]
23 Qiao Z, Zhang K, Liu J, Cheng D, Yu B, Zhao N, Xu F. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat Commun 2022;13:7164. [DOI: 10.1038/s41467-022-34883-5] [Reference Citation Analysis]
24 Wang Y, Huang Y, Fu Y, Guo Z, Chen D, Cao F, Ye Q, Duan Q, Liu M, Wang N, Han D, Qu C, Tian Z, Qu Y, Zheng Y. Reductive damage induced autophagy inhibition for tumor therapy. Nano Res 2022. [DOI: 10.1007/s12274-022-5139-z] [Reference Citation Analysis]
25 Sun Y, Xu W, Jiang C, Zhou T, Wang Q, A L. Gold nanoparticle decoration potentiate the antibacterial enhancement of TiO2 nanotubes via sonodynamic therapy against peri-implant infections. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1074083] [Reference Citation Analysis]
26 Liu Q, Ren Y, Jia H, Tong Y, Kotha S, Mao X, Huang Y, Zheng Z, He W. Valence Engineering Driven Multiple Mechanisms of Superior Antioxidant Nanosheets for Treatment of Pulmonary Fibrosis.. [DOI: 10.21203/rs.3.rs-2241692/v1] [Reference Citation Analysis]
27 Villegas M, Tejeda C, Umaña R, Iranzo EC, Salgado M. Are Reactive Oxygen Species (ROS) the Main Mechanism by Which Copper Ion Treatment Degrades the DNA of Mycobacterium avium subsp. paratuberculosis Suspended in Milk? Microorganisms 2022;10:2272. [DOI: 10.3390/microorganisms10112272] [Reference Citation Analysis]
28 Santamarina SC, Heredia DA, Durantini AM, Durantini EN. Porphyrin Polymers Bearing N,N′-Ethylene Crosslinkers as Photosensitizers against Bacteria. Polymers 2022;14:4936. [DOI: 10.3390/polym14224936] [Reference Citation Analysis]
29 Xie Z, Duo Y, Fan T, Zhu Y, Feng S, Li C, Guo H, Ge Y, Ahmed S, Huang W, Liu H, Qi L, Guo R, Li D, Prasad PN, Zhang H. Light-induced tumor theranostics based on chemical-exfoliated borophene. Light Sci Appl 2022;11:324. [DOI: 10.1038/s41377-022-00980-9] [Reference Citation Analysis]
30 Chen H, Wen K, Lu Y, Zhang X, Shi Y, Shi Q, Ma H, Peng Q, Huang H. White-light-driven fluorescence switch for super-resolution imaging guided photodynamic and photoacid therapy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1369-9] [Reference Citation Analysis]
31 Pan H, Xiao Y, Xie A, Li Z, Ding H, Yuan X, Sun R, Peng Q. The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. PeerJ 2022;10:e14304. [DOI: 10.7717/peerj.14304] [Reference Citation Analysis]
32 Sun C, Wang Y, Chen Y, Lu T, Chen H, Pan S, Chen P, Liao M, Yu J. Fabrication of an Au-doped Cu/Fe oxide-polymer core–shell nanoreactor with chemodynamic and photodynamic dual effects as potential cancer therapeutic agents. Sci Rep 2022;12:18729. [DOI: 10.1038/s41598-022-23002-5] [Reference Citation Analysis]
33 Zhang Y, Li S, Fang X, Miao B, Wang Y, Liu J, Nie G, Zhang B. Copper decorated Ti3C2 nanosystem with NIR-II-induced GSH-depletion and reactive oxygen species generation for efficient nanodynamic therapy. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0599] [Reference Citation Analysis]
34 Zhang X, Peng F, Wang D. MOFs and MOF-Derived Materials for Antibacterial Application. JFB 2022;13:215. [DOI: 10.3390/jfb13040215] [Reference Citation Analysis]
35 Liu J, Xu Y, Lu H, Wang R, Xia Z, Zhao C, Huang D, Jiang F, Chen W. Nanoaggregates of Disulfide-Decorated TrxR Inhibitor Promote Cellular Uptake, Selective Targeting, and Antitumor Efficacy. Langmuir 2022. [DOI: 10.1021/acs.langmuir.2c02309] [Reference Citation Analysis]
36 Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022. [DOI: 10.1021/acsnano.2c06337] [Reference Citation Analysis]
37 Dai Y, Sha X, Song X, Zhang X, Xing M, Liu S, Xu K, Li J. Targeted Therapy of Atherosclerosis Vulnerable Plaque by ROS-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing. IJN 2022;Volume 17:5413-5429. [DOI: 10.2147/ijn.s371873] [Reference Citation Analysis]
38 Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Current Opinion in Colloid & Interface Science 2022. [DOI: 10.1016/j.cocis.2022.101657] [Reference Citation Analysis]
39 Zhang S, Li Z, Xu Z, Tang Y, Duan C, Dai H, Dai X, Wei X, Liu Y, Xu C, Han B. Reactive oxygen species-based nanotherapeutics for head and neck squamous cell carcinoma. Materials & Design 2022;223:111194. [DOI: 10.1016/j.matdes.2022.111194] [Reference Citation Analysis]
40 Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. N-(2-hydroxyphenyl)-2-phenazinamine from Nocardiopsis exhalans induces p53-mediated intrinsic apoptosis signaling in lung cancer cell lines. Chemico-Biological Interactions 2022. [DOI: 10.1016/j.cbi.2022.110282] [Reference Citation Analysis]
41 Li Y, Miao Y, Yang L, Wang G, Fu M, Wang Y, Fu D, Huang J, Wang J, Fan Z, Lu Z, Guo J, Hu Z. Malate-based Polyester Chemically Shielded Metal-Phenolic Networks Coated Artificial Hair Fibers with Long-lasting Antimicrobial and Anti-inflammatory Performance. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140572] [Reference Citation Analysis]
42 Gao Y, Song Z, Jia L, Tang Y, Wang C, Zhao X, Hu H, Chen D, Qiao M. Self-amplified ROS production from fatty acid oxidation enhanced tumor immunotherapy by atorvastatin/PD-L1 siRNA lipopeptide nanoplexes. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121902] [Reference Citation Analysis]
43 Li W, Zhang J, Gao Z, Qi J, Ding D. Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews 2022;471:214754. [DOI: 10.1016/j.ccr.2022.214754] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Xu M, Liu Y, Luo W, Tan F, Dong D, Li W, Wang L, Yu Q. A Multifunctional Nanocatalytic System Based on Chemodynamic-Starvation Therapies with Enhanced Efficacy of Cancer Treatment. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.10.145] [Reference Citation Analysis]
45 Chen Y, Yang Y, Tang H, Zhang Z, Zhou X, Xu W. ROS-Responsive and pH-Sensitive Aminothiols Dual-Prodrug for Radiation Enteritis. Antioxidants 2022;11:2145. [DOI: 10.3390/antiox11112145] [Reference Citation Analysis]
46 Guo H, Zhang P, Zhang R, Hua Y, Zhang P, Cui X, Huang X, Li X. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1015409] [Reference Citation Analysis]
47 Li B, Li N, Chen L, Ren S, Gao D, Geng H, Fu J, Zhou M, Xing C. Alleviating Neuroinflammation through Photothermal Conjugated Polymer Nanoparticles by Regulating Reactive Oxygen Species and Ca2+ Signaling. ACS Appl Mater Interfaces 2022. [PMID: 36268893 DOI: 10.1021/acsami.2c13322] [Reference Citation Analysis]
48 Le HV, Le Cerf D. Colloidal Polyelectrolyte Complexes from Hyaluronic Acid: Preparation and Biomedical Applications. Small 2022;:e2204283. [PMID: 36260830 DOI: 10.1002/smll.202204283] [Reference Citation Analysis]
49 Johny J, van Halteren CER, Zwiehoff S, Behrends C, Bäumer C, Timmermann B, Rehbock C, Barcikowski S. Impact of Sterilization on the Colloidal Stability of Ligand-Free Gold Nanoparticles for Biomedical Applications. Langmuir 2022. [PMID: 36260482 DOI: 10.1021/acs.langmuir.2c01557] [Reference Citation Analysis]
50 Mansur AAP, Carvalho SM, Oliveira LCA, Souza-fagundes EM, Lobato ZIP, Leite MF, Mansur HS. Bioengineered Carboxymethylcellulose–Peptide Hybrid Nanozyme Cascade for Targeted Intracellular Biocatalytic–Magnetothermal Therapy of Brain Cancer Cells. Pharmaceutics 2022;14:2223. [DOI: 10.3390/pharmaceutics14102223] [Reference Citation Analysis]
51 Liu W, Ma X, Kheyr SM, Dong A, Zhang J. Covalent Organic Frameworks as Nanocarriers for Improved Delivery of Chemotherapeutic Agents. Materials (Basel) 2022;15:7215. [PMID: 36295281 DOI: 10.3390/ma15207215] [Reference Citation Analysis]
52 Rethi L, Mutalik C, Rethi L, Chiang WH, Lee HL, Pan WY, Yang TS, Chiou JF, Chen YJ, Chuang EY, Lu LS. Molecularly Targeted Photothermal Ablation of Epidermal Growth Factor Receptor-Expressing Cancer Cells with a Polypyrrole-Iron Oxide-Afatinib Nanocomposite. Cancers (Basel) 2022;14:5043. [PMID: 36291827 DOI: 10.3390/cancers14205043] [Reference Citation Analysis]
53 Li Z, Zhang S, Liu M, Zhong T, Li H, Wang J, Zhao H, Tian Y, Wang H, Wang J, Xu M, Wang S, Zhang X. Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex In Vitro and In Vivo. Mol Pharm 2022. [PMID: 36223494 DOI: 10.1021/acs.molpharmaceut.2c00553] [Reference Citation Analysis]
54 Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y, Zhang B. Living Macrophage-Delivered Tetrapod PdH Nanoenzyme for Targeted Atherosclerosis Management by ROS Scavenging, Hydrogen Anti-inflammation, and Autophagy Activation. ACS Nano 2022. [PMID: 36219731 DOI: 10.1021/acsnano.2c03422] [Reference Citation Analysis]
55 Qu H, Wang C, Guo Y, Zhao Z, Qiao L, Yang J, Wu H, Li Q, Dong A. Electrospun N-halamine/ZnO-based platform eradicates bacteria through multimodal antimicrobial mechanism of action. Rare Met . [DOI: 10.1007/s12598-022-02116-9] [Reference Citation Analysis]
56 Zhang H, Li X, You P, Song X, Fan Q, Tao X, Qu Y. Highly tumoricidal efficiency of non-oxidized MXene-Ti3C2Tx quantum dots on human uveal melanoma. Front Bioeng Biotechnol 2022;10:1028470. [DOI: 10.3389/fbioe.2022.1028470] [Reference Citation Analysis]
57 Shi F, Ai Y, Wang B, Yao Y, Zhang Z, Zhou J, Wang X, Sun W. Portable Wireless Intelligent Electrochemical Sensor for the Ultrasensitive Detection of Rutin Using Functionalized Black Phosphorene Nanocomposite. Molecules 2022;27:6603. [PMID: 36235140 DOI: 10.3390/molecules27196603] [Reference Citation Analysis]
58 Chang J, Qin X, Li S, He F, Gai S, Ding H, Yang P. Combining Cobalt Ferrite Nanozymes with a Natural Enzyme to Reshape the Tumor Microenvironment for Boosted Cascade Enzyme-Like Activities. ACS Appl Mater Interfaces 2022. [PMID: 36190449 DOI: 10.1021/acsami.2c14433] [Reference Citation Analysis]
59 Jiang W, Zhang Z, Ye M, Pan S, Huang G, Chen T, Zhu X. Morphology-directed radiosensitization of MoSe2 nanoplatforms for promoting cervical cancer radiotherapy. Nano Today 2022;46:101598. [DOI: 10.1016/j.nantod.2022.101598] [Reference Citation Analysis]
60 Kalyane D, Choudhary D, Polaka S, Goykar H, Karanwad T, Rajpoot K, Kumar Tekade R. Reactive oxygen nano-generators for cancer therapy. Progress in Materials Science 2022;130:100974. [DOI: 10.1016/j.pmatsci.2022.100974] [Reference Citation Analysis]
61 Chen S, Xie Y, Guo X, Sun D. Self-supporting electrochemical sensors for monitoring of cell-released H2O2 based on metal nanoparticle/MOF nanozymes. Microchemical Journal 2022;181:107715. [DOI: 10.1016/j.microc.2022.107715] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
62 Fu Z, Ni D, Cai S, Li H, Xiong Y, Yang R, Chen C. Versatile BP/Pd-FPEI-CpG nanocomposite for "three-in-one" multimodal tumor therapy. Nano Today 2022;46:101590. [DOI: 10.1016/j.nantod.2022.101590] [Reference Citation Analysis]
63 Lee K, Chen H, Wan Y, Zhang Z, Huang Z, Li S, Lee C. Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials 2022;289:121753. [DOI: 10.1016/j.biomaterials.2022.121753] [Reference Citation Analysis]
64 Chen L, Mao Z, Wang Y, Kang Y, Wang Y, Mei L, Ji X. Edge modification facilitated heterogenization and exfoliation of two-dimensional nanomaterials for cancer catalytic therapy. Sci Adv 2022;8:eabo7372. [PMID: 36179019 DOI: 10.1126/sciadv.abo7372] [Reference Citation Analysis]
65 Ischeikin K, State Institution «Kundiiev Institute of Occupational Health of the National Academy of Medical Sciences of Ukraine», Kyiv, Leonenko O, Patyka T, State Institution «Kundiiev Institute of Occupational Health of the National Academy of Medical Sciences of Ukraine», Kyiv, State Institution «Kundiiev Institute of Occupational Health of the National Academy of Medical Sciences of Ukraine», Kyiv. To the question of intensification of free radical oxidation of biosubstrates under action of nanosized materials. Ukr ž probl med pr 2022;2022:224-236. [DOI: 10.33573/ujoh2022.03.224] [Reference Citation Analysis]
66 Pan S, Hu B, Sun J, Yang Z, Yu W, He Z, Gao X, Song J. Identification of cross-talk pathways and ferroptosis-related genes in periodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation. Front Immunol 2022;13:1015491. [DOI: 10.3389/fimmu.2022.1015491] [Reference Citation Analysis]
67 Zhang Q, Li S, Yu Y, Zhu Y, Tong R. A Mini-Review of Diagnostic and Therapeutic Nano-Tools for Pancreatitis. Int J Nanomedicine 2022;17:4367-81. [PMID: 36160469 DOI: 10.2147/IJN.S385590] [Reference Citation Analysis]
68 Purikova O, Tkachenko I, Šmíd B, Veltruská K, Dinhová TN, Vorokhta M, Kopecký V, Hanyková L, Ju X. Free‐Blockage Mesoporous Silica Nanoparticles Loaded with Cerium Oxide as ROS‐Responsive and ROS‐Scavenging Nanomedicine. Adv Funct Materials. [DOI: 10.1002/adfm.202208316] [Reference Citation Analysis]
69 Anik MI, Pan A, Jakaria MG, Meenach SA, Bothun GD. Protein-Templated Core/Shell Au Nanostructures for Intracellular Reactive Oxygen Species Detection by SERS. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02641] [Reference Citation Analysis]
70 Phan H, Cavanagh R, Destouches D, Vacherot F, Brissault B, Taresco V, Penelle J, Couturaud B. H 2 O 2 -Responsive Nanocarriers Prepared by RAFT-Mediated Polymerization-Induced Self-Assembly of N -(2-(Methylthio)ethyl)acrylamide for Biomedical Applications. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01327] [Reference Citation Analysis]
71 Yu X, Ouyang W, Qiu H, Zhang Z, Wang Z, Xing B. Detection of Reactive Oxygen and Nitrogen Species by Upconversion Nanoparticle‐Based Near‐Infrared Nanoprobes: Recent Progress and Perspectives. Chemistry A European J 2022. [DOI: 10.1002/chem.202201966] [Reference Citation Analysis]
72 Wang RQ, Zhou T, Li A, Qu J, Zhang X, Zhu XF, Jing S. The design of fluorescein-ferrocene derivatives as HOCl-triggered turn-on fluorescent probes and anticancer prodrugs. Dalton Trans 2022. [PMID: 36134906 DOI: 10.1039/d2dt02198f] [Reference Citation Analysis]
73 Wan C, Hu M, Peng X, Lei N, Ding H, Luo Y, Yu X. Novel multifunctional dexamethasone carbon dots synthesized using the one-pot green method for anti-inflammatory, osteogenesis, and osteoimmunomodulatory in bone regeneration. Biomater Sci 2022. [PMID: 36135326 DOI: 10.1039/d2bm01153k] [Reference Citation Analysis]
74 Li L, Wang X, Huang J, Ma K, Tan X. A novel near-infrared fluorescent probe for rapid sensing of HClO in living cells and zebrafish. Front Chem 2022;10:1009186. [DOI: 10.3389/fchem.2022.1009186] [Reference Citation Analysis]
75 Zhang Y, Yin K, Wang D, Wang Y, Lu H, Zhao H, Xing M. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes. Sci Total Environ 2022;840:156727. [PMID: 35714743 DOI: 10.1016/j.scitotenv.2022.156727] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
76 Cai P, Li J, Wu X, Li Z, Shen J, Nie J, Cui Z, Chen D, Liang Y, Zhu S, Wu S. ALD-induced TiO2/Ag nanofilm for rapid surface photodynamic ion sterilization. Rare Met . [DOI: 10.1007/s12598-022-02096-w] [Reference Citation Analysis]
77 Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS Nano 2022. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Reference Citation Analysis]
78 Hou S, Chen P, He J, Chen J, Zhang J, Mammano F, Yang J. Dietary intake of deuterium oxide decreases cochlear metabolism and oxidative stress levels in a mouse model of age-related hearing loss. Redox Biol 2022;57:102472. [PMID: 36162258 DOI: 10.1016/j.redox.2022.102472] [Reference Citation Analysis]
79 Ling P, Yang P, Gao X, Sun X, Gao F. ROS generation strategy based on biomimetic nanosheets by self-assembly of nanozymes. J Mater Chem B 2022. [PMID: 36112113 DOI: 10.1039/d2tb01639g] [Reference Citation Analysis]
80 Shen H, Cheng L, Zheng Q, Liu W, Wang Y. Scavenging of reactive oxygen species can adjust the differentiation of tendon stem cells and progenitor cells and prevent ectopic calcification in tendinopathy. Acta Biomater 2022:S1742-7061(22)00570-0. [PMID: 36108965 DOI: 10.1016/j.actbio.2022.09.007] [Reference Citation Analysis]
81 Shi R, Li H, Jin X, Huang X, Ou Z, Zhang X, Luo G, Deng J. Promoting Re-epithelialization in an oxidative diabetic wound microenvironment using self-assembly of a ROS-responsive polymer and P311 peptide micelles. Acta Biomater 2022:S1742-7061(22)00578-5. [PMID: 36113723 DOI: 10.1016/j.actbio.2022.09.017] [Reference Citation Analysis]
82 Liu D, Guo R, Mao S, Huang Y, Wang B, Wu Z, Xia X, Dong J, Xin Y, Xie R, Shou J, Sun W, Pang Y, Lu Y. 3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids. Nano Res . [DOI: 10.1007/s12274-022-4851-z] [Reference Citation Analysis]
83 Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022;15:132. [PMID: 36096856 DOI: 10.1186/s13045-022-01320-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Wang T, Zhang J, Zhang H, Bai W, Dong J, Yang Z, Yang P, Gu Z, Li Y, Chen X, Xu Y. Antioxidative myricetin-enriched nanoparticles towards acute liver injury. J Mater Chem B 2022. [PMID: 36093595 DOI: 10.1039/d2tb01505f] [Reference Citation Analysis]
85 Melnikova N, Orekhov D, Simagin A, Malygina D, Korokin V, Kosmachova K, Al-Azzavi H, Solovyeva A, Kazantsev O. Antioxidant Activity of New Copolymer Conjugates of Methoxyoligo(Ethylene Glycol)Methacrylate and Betulin Methacrylate with Cerium Oxide Nanoparticles In Vitro. Molecules 2022;27:5894. [PMID: 36144630 DOI: 10.3390/molecules27185894] [Reference Citation Analysis]
86 Huang Z, Ding Y, Luo Y, Chen M, Zeng Z, Zhang T, Sun Y, Huang Y, Zhao C. ROS-triggered cycle amplification effect: A prodrug activation nanoamplifier for tumor-specific therapy. Acta Biomater 2022:S1742-7061(22)00556-6. [PMID: 36084924 DOI: 10.1016/j.actbio.2022.08.072] [Reference Citation Analysis]
87 Cai S, Liu J, Ding J, Fu Z, Li H, Xiong Y, Lian Z, Yang R, Chen C. Tumor‐Microenvironment‐Responsive Cascade Reactions by a Cobalt‐Single‐Atom Nanozyme for Synergistic Nanocatalytic Chemotherapy. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202204502] [Reference Citation Analysis]
88 Ma L, Yang Q, Zan Q, Tian H, Zhang X, Dong C, Fan L. A benzothiazole-based fluorescence probe for imaging of peroxynitrite during ferroptosis and diagnosis of tumor tissues. Anal Bioanal Chem. [DOI: 10.1007/s00216-022-04307-w] [Reference Citation Analysis]
89 Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, Cui D. Recent developments of sonodynamic therapy in antibacterial application. Nanoscale 2022. [PMID: 36052726 DOI: 10.1039/d2nr01847k] [Reference Citation Analysis]
90 Du H, Zhang D, Xu R, Xie J, Guan S, Chen S, Peng F, Qian S, Liu X. Ferric oxide nanosheet-engineered Mg alloy for synergetic osteosarcoma photothermal/chemodynamic therapy. Journal of Materials Science & Technology 2022. [DOI: 10.1016/j.jmst.2022.07.056] [Reference Citation Analysis]
91 Vacek J, Zatloukalova M, Kabelac M. Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.101142] [Reference Citation Analysis]
92 Luo Y, Qiao B, Yang C, Zhang P, Xie Z, Cao J, Yang A, Xiang Q, Ran H, Wang Z, Hao L, Cao Y, Zhou Z, Ren J. . IJN 2022;Volume 17:4547-65. [DOI: 10.2147/ijn.s361648] [Reference Citation Analysis]
93 Zhou T, Ran J, Xu P, Shen L, He Y, Ye J, Wu L, Gao C. A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydrate Polymers 2022;292:119667. [DOI: 10.1016/j.carbpol.2022.119667] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
94 Lu Z, Liu D, Wei P, Yi T. Activated aggregation strategies to construct size‐increasing nanoparticles for cancer therapy. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1848] [Reference Citation Analysis]
95 Garcia-Peiro JI, Bonet-Aleta J, Santamaria J, Hueso JL. Platinum nanoplatforms: classic catalysts claiming a prominent role in cancer therapy. Chem Soc Rev 2022;51:7662-81. [PMID: 35983786 DOI: 10.1039/d2cs00518b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Chen F, Zhang X, Wang Z, Xu C, Hu J, Liu L, Zhou J, Sun B. Dual-responsive and NIR-driven free radical nanoamplifier with glutathione depletion for enhanced tumor-specific photothermal/thermodynamic/chemodynamic synergistic Therapy. Biomater Sci 2022. [PMID: 36040793 DOI: 10.1039/d2bm01025a] [Reference Citation Analysis]
97 Wang H, Liu M, Zeng X, Zheng Y, Wang Y, Zhou Y. Cell death affecting the progression of gastric cancer. Cell Death Discov 2022;8:377. [PMID: 36038533 DOI: 10.1038/s41420-022-01161-8] [Reference Citation Analysis]
98 Higashi SL, Shintani Y, Ikeda M. Installing Reduction Responsiveness into Biomolecules by Introducing Nitroaryl Groups. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202201103] [Reference Citation Analysis]
99 Qian J, Wan W, Fan M. HMOX1 silencing prevents doxorubicin-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis by downregulating CTGF. Gen Thorac Cardiovasc Surg 2022. [PMID: 36008747 DOI: 10.1007/s11748-022-01867-7] [Reference Citation Analysis]
100 Xiong X, Wang L, He S, Guan S, Li D, Zhang M, Qu X. Vacancy defect-promoted nanomaterials for efficient phototherapy and phototherapy-based multimodal Synergistic Therapy. Front Bioeng Biotechnol 2022;10:972837. [DOI: 10.3389/fbioe.2022.972837] [Reference Citation Analysis]
101 John Newton Amaldoss M, Pandzic E, Koshy P, Kumar N, Sorrell CC, Unnikrishnan A. Detection and Quantification of Nanoparticle-Induced Intracellular ROS in Live Cells by Laser Scanning Confocal Microscopy. Methods 2022:S1046-2023(22)00175-X. [PMID: 36028162 DOI: 10.1016/j.ymeth.2022.08.005] [Reference Citation Analysis]
102 Liu W, Jia L, Zhao S, Ma Y, Liu S, Wang Q, Lv X, Jiang H, Liu X. ROS‐scavenging and antimicrobial polysaccharide hydrogel for methicillin‐resistant staphylococcus aureus‐infected diabetic wound healing. Nano Select 2022. [DOI: 10.1002/nano.202200117] [Reference Citation Analysis]
103 Park CG, Lee W, Kim D, Li F, Park W. Editorial: Advanced nanotechnology for reactive oxygen species-mediated therapies. Front Mol Biosci 2022;9:1000113. [DOI: 10.3389/fmolb.2022.1000113] [Reference Citation Analysis]
104 Liu D, Dai X, Ye L, Wang H, Qian H, Cheng H, Wang X. Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1838] [Reference Citation Analysis]
105 Abuduwaili W, Wang X, Huang AT, Sun JL, Xu RC, Zhang GC, Liu ZY, Wang F, Zhu CF, Liu TT, Dong L, Zhu JM, Weng SQ, Li Y, Shen XZ. Iridium Complex-Loaded Sorafenib Nanocomposites for Synergistic Chemo-photodynamic Therapy of Hepatocellular Carcinoma. ACS Appl Mater Interfaces 2022. [PMID: 35951459 DOI: 10.1021/acsami.2c07247] [Reference Citation Analysis]
106 Wang J, Wang Y, Ren W, Zhang D, Ju P, Dou K. "Nano Killers" Activation by permonosulfate enables efficient anaerobic microorganisms disinfection. J Hazard Mater 2022;440:129742. [PMID: 35969947 DOI: 10.1016/j.jhazmat.2022.129742] [Reference Citation Analysis]
107 Zhou Z, Gao Z, Chen W, Wang X, Chen Z, Zheng Z, Chen Q, Tan M, Liu D, Zhang Y, Hou Z. Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped Cu9S5 nanozymes. Acta Biomater 2022:S1742-7061(22)00488-3. [PMID: 35953045 DOI: 10.1016/j.actbio.2022.08.011] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Villegas M, Tejeda C, Umaña R, Iranzo EC, Salgado M. Are reactive oxygen species (ROS) the main mechanism by which copper ion treatment degrades the DNA of Mycobacterium avium subsp. paratuberculosis suspended in milk?. [DOI: 10.21203/rs.3.rs-1897814/v1] [Reference Citation Analysis]
109 Jena S, Tulsiyan KD, Kumari A, Das R, Biswal HS. Thiolumazines as Heavy-Atom-Free Photosensitizers for Applications in Daylight Photodynamic Therapy: Insights from Ultrafast Excited-State Dynamics. J Phys Chem B 2022. [PMID: 35938784 DOI: 10.1021/acs.jpcb.2c03489] [Reference Citation Analysis]
110 Chen M, Liang Z, Fan X, Qu R, Wang H, Chen T. A ratiometric ESIPT fluorescent probe for detection of anticancer-associated H2O2 level in vitro and in vivo. Spectrochim Acta A Mol Biomol Spectrosc 2022;276:121163. [PMID: 35378493 DOI: 10.1016/j.saa.2022.121163] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
111 Chang C, Hsieh C, Wu H, Ameen M, Hung T. Investigation of Sonosensitizers Based on Phenothiazinium Photosensitizers. Applied Sciences 2022;12:7819. [DOI: 10.3390/app12157819] [Reference Citation Analysis]
112 Yan J, Hanif S, Zhang D, Ismail M, Wang X, Li Q, Shi B, Muhammad P, Wu H. Arsenic Prodrug-Mediated Tumor Microenvironment Modulation Platform for Synergetic Glioblastoma Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35921662 DOI: 10.1021/acsami.2c12076] [Reference Citation Analysis]
113 Zhang Z, Pan Y, Cun JE, Li J, Guo Z, Pan Q, Gao W, Pu Y, Luo K, He B. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy. Acta Biomater 2022:S1742-7061(22)00459-7. [PMID: 35926781 DOI: 10.1016/j.actbio.2022.07.055] [Reference Citation Analysis]
114 Wang J, Kong W, Jin H, Li C, Luo Q, Luo Y, Yuan C, Lu J, Zhang L, Liu X. Tumor microenvironment responsive theranostic agent for enhanced chemo/chemodynamic/photothermal therapy. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112750] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Lu S, Feng W, Yao X, Song X, Guo J, Chen Y, Hu Z. Microorganism-enabled photosynthetic oxygeneration and ferroptosis induction reshape tumor microenvironment for augmented nanodynamic therapy. Biomaterials 2022;287:121688. [DOI: 10.1016/j.biomaterials.2022.121688] [Reference Citation Analysis]
116 Sun J, Peng W, Fan B, Gan D, Li L, Liu P, Shen J. Tertiary amines convert 1O2 to H2O2 with enhanced photodynamic antibacterial efficiency. Journal of Hazardous Materials 2022;435:128948. [DOI: 10.1016/j.jhazmat.2022.128948] [Reference Citation Analysis]
117 Li Q, Wang A, Li J, Liang S, Tian Y, Bai S. A synergistic therapy strategy for hypoxic solid tumor therapy. Matter 2022;5:2425-8. [DOI: 10.1016/j.matt.2022.05.017] [Reference Citation Analysis]
118 Yao W, Xu M, Li J, Hu W, Huang W. Revealing excited-state dynamics of type I zinc phthalocyanine photosensitizer for photodynamic therapy. Sci Sin -Chim 2022;52:1384-1392. [DOI: 10.1360/ssc-2022-0057] [Reference Citation Analysis]
119 Muhammad P, Hanif S, Li J, Guller A, Rehman FU, Ismail M, Zhang D, Yan X, Fan K, Shi B. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 2022;45:101530. [DOI: 10.1016/j.nantod.2022.101530] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
120 Liu Z, Li C, Chen C, Wang T, He L, Nan X, Li L, Qian Q, Bai P. The danger of dichloromethane in the synthesis and application of imidazole-based dyes. Dyes and Pigments 2022;204:110404. [DOI: 10.1016/j.dyepig.2022.110404] [Reference Citation Analysis]
121 Wang Z, Wang Y, Cheng Y, Tian Q. Fe@Fe3O4/HKUST-1 composite: A Fenton-like agent with magnetic hyperthermia-enhanced chemodynamic therapy performance. Materials Letters 2022;321:132420. [DOI: 10.1016/j.matlet.2022.132420] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. . IJN 2022;Volume 17:3751-75. [DOI: 10.2147/ijn.s378217] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
123 Liu P, Ji P, Wang L, Guo H, Huo M, Shi J. Concurrent antibiosis and anti-inflammation against bacterial pneumonia by zinc hexacyanoferrate nanocatalysts. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121768] [Reference Citation Analysis]
124 Xu C, Ma W, Kuang H. Chiral Nanomaterials for Biocatalysis. Chiral Nanoprobes for Biological Applications 2022. [DOI: 10.1002/9783527833603.ch6] [Reference Citation Analysis]
125 Yang P, Chang Y, Zhang J, Gao F, Liu X, Wei Q, Ma X, Guo Y. The combination of in situ photodynamic promotion and ion-interference to improve the efficacy of cancer therapy. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.08.125] [Reference Citation Analysis]
126 Morvaridzadeh M, Estêvão MD, Morvaridi M, Belančić A, Mohammadi S, Hassani M, Heshmati J, Ziaie S. The effect of Conjugated Linoleic Acid intake on oxidative stress parameters and antioxidant enzymes: a systematic review and meta-analysis of randomized clinical trials. Prostaglandins Other Lipid Mediat 2022;:106666. [PMID: 35914666 DOI: 10.1016/j.prostaglandins.2022.106666] [Reference Citation Analysis]
127 Zhao Y, Liu J, He M, Dong Q, Zhang L, Xu Z, Kang Y, Xue P. Platinum-Titania Schottky Junction as Nanosonosensitizer, Glucose Scavenger, and Tumor Microenvironment-Modulator for Promoted Cancer Treatment. ACS Nano 2022. [PMID: 35904186 DOI: 10.1021/acsnano.2c02540] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
128 Luo M, Yukawa H, Sato K, Tozawa M, Tokunaga M, Kameyama T, Torimoto T, Baba Y. Multifunctional Magnetic CuS/Gd 2 O 3 Nanoparticles for Fluorescence/Magnetic Resonance Bimodal Imaging-Guided Photothermal-Intensified Chemodynamic Synergetic Therapy of Targeted Tumors. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c06503] [Reference Citation Analysis]
129 Cun JE, Pan Y, Zhang Z, Lu Y, Li J, Pan Q, Gao W, Luo K, He B, Pu Y. Photo-enhanced upcycling H2O2 into hydroxyl radicals by IR780-embedded Fe3O4@MIL-100 for intense nanocatalytic tumor therapy. Biomaterials 2022;287:121687. [PMID: 35872555 DOI: 10.1016/j.biomaterials.2022.121687] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 Li M, Fang F, Sun M, Zhang Y, Hu M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: An emerging paradigm for regenerative medicine. Theranostics 2022;12:4879-903. [PMID: 35836815 DOI: 10.7150/thno.72812] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
131 Yang Y, Wang W, Liu K, Zhao J. Immobilization of Superoxide Dismutase in Mesoporous Silica and its Applications in Strengthening the Lifespan and Healthspan of Caenorhabditis elegans. Front Bioeng Biotechnol 2022;10:795620. [DOI: 10.3389/fbioe.2022.795620] [Reference Citation Analysis]
132 Cheng G, Liu X, Liu Y, Liu Y, Ma R, Luo J, Zhou X, Wu Z, Liu Z, Chen T, Yang Y. Ultrasmall Coordination Polymers for Alleviating ROS-Mediated Inflammatory and Realizing Neuroprotection against Parkinson’s Disease. Research 2022;2022:1-16. [DOI: 10.34133/2022/9781323] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022;51:6126-76. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
134 Zheng Y, Wei M, Wu H, Li F, Ling D. Antibacterial metal nanoclusters. J Nanobiotechnology 2022;20:328. [PMID: 35842693 DOI: 10.1186/s12951-022-01538-y] [Reference Citation Analysis]
135 Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022;188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 You Y, Zhu YX, Jiang J, Wang M, Chen Z, Wu C, Wang J, Qiu W, Xu D, Lin H, Shi J. Water-Enabled H2 Generation from Hydrogenated Silicon Nanosheets for Efficient Anti-Inflammation. J Am Chem Soc 2022. [PMID: 35830228 DOI: 10.1021/jacs.2c04412] [Reference Citation Analysis]
137 Sivasubramanian M, Chu C, Cheng S, Chen N, Chen C, Chuang YC, Yu H, Chen Y, Liao L, Lo L. Multimodal Magnetic Resonance and Photoacoustic Imaging of Tumor-Specific Enzyme-Responsive Hybrid Nanoparticles for Oxygen Modulation. Front Bioeng Biotechnol 2022;10:910902. [DOI: 10.3389/fbioe.2022.910902] [Reference Citation Analysis]
138 Huang Z, Luo Y, Zhang T, Ding Y, Chen M, Chen J, Liu Q, Huang Y, Zhao C. A Stimuli-Responsive Small-Molecule Metal-Carrying Prochelator: A Novel Prodrug Design Strategy for Metal Complexes. Angew Chem Int Ed Engl 2022;61:e202203500. [PMID: 35513877 DOI: 10.1002/anie.202203500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Liu X, Wang N, Liu X, Deng R, Kang R, Xie L. Vascular Repair by Grafting Based on Magnetic Nanoparticles. Pharmaceutics 2022;14:1433. [PMID: 35890328 DOI: 10.3390/pharmaceutics14071433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Zhang S, Chen J, Yang W, Chen X. Vacancies-rich CoAl monolayer layered double hydroxide as efficient superoxide dismutase-like nanozyme. Nano Res . [DOI: 10.1007/s12274-022-4479-z] [Reference Citation Analysis]
141 Li T, Wu Y, Cai W, Wang D, Ren C, Shen T, Yu D, Qiang S, Hu C, Zhao Z, Yu J, Peng C, Tang BZ. Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis. Adv Sci (Weinh) 2022;:e2202485. [PMID: 35794437 DOI: 10.1002/advs.202202485] [Reference Citation Analysis]
142 Li Z, Wang C, Dai C, Hu R, Ding L, Feng W, Huang H, Wang Y, Bai J, Chen Y. Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy. Biomaterials 2022;287:121668. [PMID: 35834999 DOI: 10.1016/j.biomaterials.2022.121668] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Xiang X, Shi D, Gao J. The Advances and Biomedical Applications of Imageable Nanomaterials. Front Bioeng Biotechnol 2022;10:914105. [DOI: 10.3389/fbioe.2022.914105] [Reference Citation Analysis]
144 Wang Q, Cheng C, Zhao S, Liu Q, Zhang Y, Liu W, Zhao X, Zhang H, Pu J, Zhang S, Zhang H, Du Y, Wei H. A Valence‐Engineered Self‐Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202201101] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
145 Yang K, Qi S, Yu X, Bai B, Zhang X, Mao Z, Huang F, Yu G. A Hybrid Supramolecular Polymeric Nanomedicine for Cascade-Amplified Synergetic Cancer Therapy. Angew Chem Int Ed Engl 2022;61:e202203786. [PMID: 35384193 DOI: 10.1002/anie.202203786] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
146 Wu C, Zhang Y, Wei X, Li N, Huang H, Xie Z, Zhang H, Yang G, Li M, Li T, Yang H, Li S, Qin X, Liu Y. Tumor Homing-Penetrating and Nanoenzyme-Augmented 2D Phototheranostics Against Hypoxic Solid Tumors. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.07.044] [Reference Citation Analysis]
147 Zhao J, Gong J, Wei J, Yang Q, Li G, Tong Y, He W. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione. Journal of Colloid and Interface Science 2022;618:11-21. [DOI: 10.1016/j.jcis.2022.03.028] [Reference Citation Analysis]
148 Zhao H, Guo Y, Yuan A, Xia S, Gao Z, Huang Y, Lv F, Liu L, Wang S. Nature-inspired nanothylakoids for multimodal cancer therapeutics. Sci China Mater 2022;65:1971-1979. [DOI: 10.1007/s40843-021-2003-5] [Reference Citation Analysis]
149 Huang J, Li Y, Zhang L, Wang J, Xu Z, Kang Y, Xue P. A platinum nanourchin-based multi-enzymatic platform to disrupt mitochondrial function assisted by modulating the intracellular H2O2 homeostasis. Biomaterials 2022;286:121572. [DOI: 10.1016/j.biomaterials.2022.121572] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
150 Ren C, Xu X, Yan D, Gu M, Zhang J, Zhang H, Han C, Kong L. Dual-action nanoplatform with a synergetic strategy to promote oxygen accumulation for enhanced photodynamic therapy against hypoxic tumors. Acta Biomater 2022;146:465-77. [PMID: 35526738 DOI: 10.1016/j.actbio.2022.04.035] [Reference Citation Analysis]
151 Wang Z, Yu N, Zhang J, Ren Q, Li M, Chen Z. Nanoscale Hf-hematoporphyrin frameworks for synergetic sonodynamic/radiation therapy of deep-seated tumors. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.06.174] [Reference Citation Analysis]
152 Bonet-aleta J, Sancho-albero M, Calzada-funes J, Irusta S, Martin-duque P, Hueso JL, Santamaria J. Glutathione-Triggered catalytic response of Copper-Iron mixed oxide Nanoparticles. Leveraging tumor microenvironment conditions for chemodynamic therapy. Journal of Colloid and Interface Science 2022;617:704-17. [DOI: 10.1016/j.jcis.2022.03.036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
153 Pavlidis G. Oxidative Stress and Antioxidant Therapy in Cardiovascular Diseases—Clinical Challenge. JCM 2022;11:3784. [DOI: 10.3390/jcm11133784] [Reference Citation Analysis]
154 Karkoszka M, Rok J, Banach K, Kowalska J, Rzepka Z, Wrześniok D. The Assessment of Meloxicam Phototoxicity in Human Normal Skin Cells: In Vitro Studies on Dermal Fibroblasts and Epidermal Melanocytes. Molecules 2022;27:4215. [DOI: 10.3390/molecules27134215] [Reference Citation Analysis]
155 Ding G, Tong J, Gong J, Wang Z, Su Z, Liu L, Han X, Wang J, Zhang L, Wang X, Wen LL, Shan GG. Molecular engineering to achieve AIE-active photosensitizers with NIR emission and rapid ROS generation efficiency. J Mater Chem B 2022. [PMID: 35766043 DOI: 10.1039/d1tb02738g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
156 Zhang X, Wang S, Tang K, Pan W, Xu H, Li Y, Gao Y, Li N, Tang B. Cu2+ Embedded Three-Dimensional Covalent Organic Framework for Multiple ROS-Based Cancer Immunotherapy. ACS Appl Mater Interfaces 2022. [PMID: 35763788 DOI: 10.1021/acsami.2c07739] [Reference Citation Analysis]
157 Li Z, Li X, Ai S, Liu S, Guan W. Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. Int J Nanomedicine 2022;17:2707-31. [PMID: 35747168 DOI: 10.2147/IJN.S364840] [Reference Citation Analysis]
158 Li C, Zheng X, Hu M, Jia M, Jin R, Nie Y. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Deliv 2022. [PMID: 35760767 DOI: 10.1080/17425247.2022.2094364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Chen T, Zeng W, Liu Y, Yu M, Huang C, Shi Z, Lin C, Tang J, Mei L, Wu M. Cu-Doped Polypyrrole with Multi-Catalytic Activities for Sono-Enhanced Nanocatalytic Tumor Therapy. Small 2022;:e2202964. [PMID: 35717674 DOI: 10.1002/smll.202202964] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
160 Guernelli M, Menichetti A, Guidetti G, Costantini PE, Calvaresi M, Danielli A, Mazzaro R, Morandi V, Montalti M. pH Switchable Water Dispersed Photocatalytic Nanoparticles. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202200118] [Reference Citation Analysis]
161 Zhao Y, Wang S, Ding Y, Zhang Z, Huang T, Zhang Y, Wan X, Wang ZL, Li L. Piezotronic Effect-Augmented Cu2-xO-BaTiO3 Sonosensitizers for Multifunctional Cancer Dynamic Therapy. ACS Nano 2022. [PMID: 35699224 DOI: 10.1021/acsnano.2c01968] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
162 Guo X, Kang J, Wang Z, Wang Y, Liu M, Zhu D, Yang F, Kang X. Nrf2 signaling in the oxidative stress response after spinal cord injury. Neuroscience 2022:S0306-4522(22)00292-5. [PMID: 35710066 DOI: 10.1016/j.neuroscience.2022.06.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Xiang J, Liu J, Liu X, Zhou Q, Zhao Z, Piao Y, Shao S, Zhou Z, Tang J, Shen Y. Enzymatic drug release cascade from polymeric prodrug nanoassemblies enables targeted chemotherapy. J Control Release 2022;348:444-55. [PMID: 35691498 DOI: 10.1016/j.jconrel.2022.06.007] [Reference Citation Analysis]
164 Chen J, Liu Y, Cheng G, Guo J, Du S, Qiu J, Wang C, Li C, Yang X, Chen T, Chen Z. Tailored Hydrogel Delivering Niobium Carbide Boosts ROS-Scavenging and Antimicrobial Activities for Diabetic Wound Healing. Small 2022;:e2201300. [PMID: 35678523 DOI: 10.1002/smll.202201300] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
165 Zhou Z, Wang Y, Hu P. Oxidation-Responsive Micelles for Drug Release Monitoring and Bioimaging of Inflammation Based on FRET Effect in vitro and in vivo. Int J Nanomedicine 2022;17:2447-57. [PMID: 35669000 DOI: 10.2147/IJN.S356202] [Reference Citation Analysis]
166 Huang WQ, Zhu YQ, You W, Chen J, Gao F, Nie X, Zhang Z, Chen G, Yu Y, Xia L, Hong CY, Wang LH, Hao ZY, You YZ. Tumor Microenvironment Triggered the In Situ Synthesis of an Excellent Sonosensitizer in Tumor for Sonodynamic Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35670468 DOI: 10.1021/acsami.2c05369] [Reference Citation Analysis]
167 Xu G, Li C, Chi C, Wu L, Sun Y, Zhao J, Xia XH, Gou S. A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nat Commun 2022;13:3064. [PMID: 35654794 DOI: 10.1038/s41467-022-30721-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
168 Liu Q, Shi L, Liao Y, Cao X, Liu X, Yu Y, Wang Z, Lu X, Wang J. Ultrathin-FeOOH-Coated MnO2 Sonosensitizers with Boosted Reactive Oxygen Species Yield and Remodeled Tumor Microenvironment for Efficient Cancer Therapy. Adv Sci (Weinh) 2022;9:e2200005. [PMID: 35484709 DOI: 10.1002/advs.202200005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
169 Zhao M, Yang R, Wei Y, Su J, Wang X, Zhang N, Sun P, Chen D, Zhao Y. Dual isolated bimetal single-atom catalysts for tumor ROS cycle and parallel catalytic therapy. Nano Today 2022;44:101493. [DOI: 10.1016/j.nantod.2022.101493] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Liao Y, Wang D, Zhu S, Zhou R, Rahbarizadeh F, Gu Z. Piezoelectric materials for synergistic piezo- and radio-catalytic tumor therapy. Nano Today 2022;44:101510. [DOI: 10.1016/j.nantod.2022.101510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Li L, Zheng M, Yan X, Huang H, Cao S, Liu K, Liu J. Quantitative detection of H2O2 with a composite fluorescent probe of 8-quinoline boronic acid-Al(III). Journal of Photochemistry and Photobiology A: Chemistry 2022. [DOI: 10.1016/j.jphotochem.2022.114069] [Reference Citation Analysis]
172 Liu R, Gong L, Zhu X, Zhu S, Wu X, Xue T, Yan L, Du J, Gu Z. Transformable Gallium-Based Liquid Metal Nanoparticles for Tumor Radiotherapy Sensitization. Adv Healthc Mater 2022;11:e2102584. [PMID: 35114075 DOI: 10.1002/adhm.202102584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
173 Yang J, Yang L, Li Q, Zhang L. Ferrocene-based multifunctional nanoparticles for combined chemo/chemodynamic/photothermal therapy. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.06.117] [Reference Citation Analysis]
174 Dineshbabu N, Jayaprakash R, Karuppasamy P, Arun T, Vijaya JJ, Nimshi RE, Pandian MS, Packiam SM, Ramasamy P. Investigation on Tetracycline degradation and bactericidal properties of binary and ternary ZnO/NiO/g-C3N4 composites prepared by a facile co-precipitation method. Journal of Environmental Chemical Engineering 2022;10:107368. [DOI: 10.1016/j.jece.2022.107368] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
175 Pang L, Zhao R, Chen J, Ding J, Chen X, Chai W, Cui X, Li X, Wang D, Pan H. Osteogenic and anti-tumor Cu and Mn-doped borosilicate nanoparticles for syncretic bone repair and chemodynamic therapy in bone tumor treatment. Bioactive Materials 2022;12:1-15. [DOI: 10.1016/j.bioactmat.2021.10.030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
176 Ding D, Mei Z, Huang H, Feng W, Chen L, Chen Y, Zhou J. Oxygen-Independent Sulfate Radical for Stimuli-Responsive Tumor Nanotherapy. Adv Sci (Weinh) 2022;9:e2200974. [PMID: 35488513 DOI: 10.1002/advs.202200974] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
177 Liu Z. Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role! Food Chemistry 2022;380:132143. [DOI: 10.1016/j.foodchem.2022.132143] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
178 Zhang H, Peng R, Luo Y, Cui Q, Gong F, Li L. In Situ Synthesis of Gold Nanoclusters in Covalent Organic Frameworks with Enhanced Photodynamic Properties and Antibacterial Performance. ACS Appl Bio Mater 2022. [PMID: 35642387 DOI: 10.1021/acsabm.2c00451] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
179 Chen D, Dai H, Wang W, Cai Y, Mou X, Zou J, Shao J, Mao Z, Zhong L, Dong X, Zhao Y. Proton-Driven Transformable 1 O2 -Nanotrap for Dark and Hypoxia Tolerant Photodynamic Therapy. Adv Sci (Weinh) 2022;9:e2200128. [PMID: 35435332 DOI: 10.1002/advs.202200128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
180 Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022;20:248. [PMID: 35641956 DOI: 10.1186/s12951-022-01450-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
181 Feng Y, Wang X, Huang C, Zhang D, Liu T, Zhang C, Zhang Y, Ji D, Tang J, Sun Y, Quiles JL. Upregulated circTMEM59 Inhibits Cell Growth and Metastasis by miR-668-3p/ID4 Axis in Colorectal Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-27. [DOI: 10.1155/2022/7242124] [Reference Citation Analysis]
182 Wang Y, Shi X, Fang H, Han Z, Yuan H, Zhu Z, Dong L, Guo Z, Wang X. Platinum-Based Two-Photon Photosensitizer Responsive to NIR Light in Tumor Hypoxia Microenvironment. J Med Chem 2022. [PMID: 35605111 DOI: 10.1021/acs.jmedchem.2c00141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
183 Jin L, Miao Y, Liu D, Song F. Fe/Mn‐Porphyrin Coordination Polymer Nanoparticles for Magnetic Resonance Imaging (MRI) Guided‐Combination Therapy between Photodynamic Therapy and Chemodynamic Therapy. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202104366] [Reference Citation Analysis]
184 Huang Z, Luo Y, Zhang T, Ding Y, Chen M, Chen J, Liu Q, Huang Y, Zhao C. A Stimuli‐Responsive Small‐Molecule Metal‐Carrying Prochelator: A Novel Prodrug Design Strategy for Metal Complexes. Angewandte Chemie. [DOI: 10.1002/ange.202203500] [Reference Citation Analysis]
185 Liu Y, Zhao Y, Li Y, Ye Z, Zhang J, Zhou Y, Gao T, Li F. Recent Advances of Nanoelectrodes for Single-Cell Electroanalysis: From Extracellular, Intercellular to Intracellular. J Anal Test . [DOI: 10.1007/s41664-022-00223-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Liu S, Wang B, Yu Y, Liu Y, Zhuang Z, Zhao Z, Feng G, Qin A, Tang BZ. Cationization-Enhanced Type I and Type II ROS Generation for Photodynamic Treatment of Drug-Resistant Bacteria. ACS Nano 2022. [PMID: 35584060 DOI: 10.1021/acsnano.2c01206] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
187 Li Y, Luan T, Cheng K, Zhang D, Fan W, Li P, Zhao Y. Effective Photocatalytic Initiation of Reactive Oxygen Species by a Photoactive Covalent Organic Framework for Oxidation Reactions. ACS Materials Lett . [DOI: 10.1021/acsmaterialslett.2c00236] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
188 Yang XX, Xu X, Wang MF, Xu HZ, Peng XC, Han N, Yu TT, Li LG, Li QR, Chen X, Wen Y, Li TF. A nanoreactor boosts chemodynamic therapy and ferroptosis for synergistic cancer therapy using molecular amplifier dihydroartemisinin. J Nanobiotechnology 2022;20:230. [PMID: 35568865 DOI: 10.1186/s12951-022-01455-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
189 Hou R, Lu T, Gao W, Shen J, Yu Z, Li D, Zhang R, Zheng Y, Cai X. Prussian Blue Nanozyme Promotes the Survival Rate of Skin Flaps by Maintaining a Normal Microenvironment. ACS Nano 2022. [PMID: 35549154 DOI: 10.1021/acsnano.2c02832] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
190 Zhang J, Yang J, Qin X, Zhuang J, Jing D, Ding Y, Lu B, Wang Y, Chen T, Yao Y. Glucose Oxidase Integrated Porphyrinic Covalent Organic Polymers for Combined Photodynamic/Chemodynamic/Starvation Therapy in Cancer Treatment. ACS Biomater Sci Eng 2022;8:1956-63. [PMID: 35412788 DOI: 10.1021/acsbiomaterials.2c00138] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
191 Mu J, Li C, Shi Y, Liu G, Zou J, Zhang DY, Jiang C, Wang X, He L, Huang P, Yin Y, Chen X. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nat Commun 2022;13:2513. [PMID: 35523769 DOI: 10.1038/s41467-022-29772-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
192 Yang K, Qi S, Yu X, Bai B, Zhang X, Mao Z, Huang F, Yu G. A Hybrid Supramolecular Polymeric Nanomedicine for Cascade‐Amplified Synergetic Cancer Therapy. Angewandte Chemie. [DOI: 10.1002/ange.202203786] [Reference Citation Analysis]
193 Han Y, Liu C, Chen B, Fu C, Kankala RK, Wang S, Chen A. Orchestrated tumor apoptosis (Cu2+) and bone tissue calcification (Ca2+) by hierarchical Copper/Calcium-ensembled bioactive silica for osteosarcoma therapy. Chemical Engineering Journal 2022;435:134820. [DOI: 10.1016/j.cej.2022.134820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
194 Ouyang J, Sun L, Zeng F, Wu S. Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic imaging. Coordination Chemistry Reviews 2022;458:214438. [DOI: 10.1016/j.ccr.2022.214438] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 22.0] [Reference Citation Analysis]
195 Ming H, Li B, Tian H, Zhou L, Jiang J, Zhang T, Qiao L, Wu P, Nice EC, Zhang W, He W, Huang C, Zhang H. A minimalist and robust chemo-photothermal nanoplatform capable of augmenting autophagy-modulated immune response against breast cancer. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100289] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
196 Li Y, Zhang M, Han H, Zhang B, Matson JB, Chen D, Li W, Wang Y. Peptide-based supramolecular photodynamic therapy systems: From rational molecular design to effective cancer treatment. Chemical Engineering Journal 2022;436:135240. [DOI: 10.1016/j.cej.2022.135240] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
197 Hu X, Li J, Yang Z, Zhang J, Wang H. Fluorescent intracellular imaging of reactive oxygen species and pH levels moderated by a hydrogenase mimic in living cells. Journal of Pharmaceutical Analysis 2022. [DOI: 10.1016/j.jpha.2022.05.007] [Reference Citation Analysis]
198 Li X, Liu Y, Qi X, Xiao S, Xu Z, Yuan Z, Liu Q, Li H, Ma S, Liu T, Huang Y, Zhang X, Zhang X, Mao Z, Luo G, Deng J. Sensitive Activatable Nanoprobes for Real-Time Ratiometric Magnetic Resonance Imaging of Reactive Oxygen Species and Ameliorating Inflammation In Vivo. Adv Mater 2022;34:e2109004. [PMID: 35276751 DOI: 10.1002/adma.202109004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
199 Ma W, Zhang X, Liu Y, Fan L, Gan J, Liu W, Zhao Y, Sun L. Polydopamine Decorated Microneedles with Fe-MSC-Derived Nanovesicles Encapsulation for Wound Healing. Adv Sci (Weinh) 2022;9:e2103317. [PMID: 35266637 DOI: 10.1002/advs.202103317] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
200 Zhao Y, Xiong H, Li Y, Gao W, Hua C, Wu J, Fan C, Cai X, Zheng Y. Magnetically Actuated Reactive Oxygen Species Scavenging Nano‐Robots for Targeted Treatment. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202200061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
201 Li Y, Qin Y, Shang Y, Li Y, Liu F, Luo J, Zhu J, Guo X, Wang Z, Zhao Y. Mechano‐Responsive Leapfrog Micelles Enable Interactive Apoptotic and Ferroptotic Cancer Therapy. Adv Funct Materials. [DOI: 10.1002/adfm.202112000] [Reference Citation Analysis]
202 Guo Y, He X, Zhao RM, Yang HZ, Huang Z, Zhang J, Yu XQ. Zn-dipicolylamine-based reactive oxygen species-responsive lipids for siRNA delivery and in vivo colitis treatment. Acta Biomater 2022:S1742-7061(22)00242-2. [PMID: 35489607 DOI: 10.1016/j.actbio.2022.04.033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
203 Zhelavskyi MM, Kernychnyi SP, Dmytriv OY, Betlinska TV. Cellular aging and immunity. Ukr Jour of Vet and Agr Sci 2022;5:8-16. [DOI: 10.32718/ujvas5-1.02] [Reference Citation Analysis]
204 Liu R, Peng L, Zhou L, Huang Z, Zhou C, Huang C. Oxidative Stress in Cancer Immunotherapy: Molecular Mechanisms and Potential Applications. Antioxidants 2022;11:853. [DOI: 10.3390/antiox11050853] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
205 Xu R, Saw PE, Xu L. Long-Circulating Theranostic 2D Metal-Organic Frameworks with Concurrent O2 Self-Supplying and GSH Depletion Characteristic for Enhanced Cancer Chemodynamic Therapy. Small Methods 2022;:e2200178. [PMID: 35466561 DOI: 10.1002/smtd.202200178] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
206 Shi T, Huang C, Li Y, Huang F, Yin S. NIR-II phototherapy agents with aggregation-induced emission characteristics for tumor imaging and therapy. Biomaterials 2022;285:121535. [PMID: 35487066 DOI: 10.1016/j.biomaterials.2022.121535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
207 Chen Y, Lu Y, Xu S, Liu M, Chen W, Zhang Y, Wei L, Zhong C. HDAC1 expression is positively correlated with NADPH oxidase 4-mediated oxidative stress in a mouse model of traumatic brain injury. J Neurophysiol 2022. [PMID: 35443136 DOI: 10.1152/jn.00049.2022] [Reference Citation Analysis]
208 Yang J, Yao H, Guo Y, Yang B, Shi J. Enhancing Tumor Catalytic Therapy by Co-Catalysis. Angew Chem Int Ed Engl 2022;61:e202200480. [PMID: 35143118 DOI: 10.1002/anie.202200480] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
209 Huang L, Sun D, Pu H. Photosensitized Peroxidase Mimicry at the Hierarchical 0D/2D Heterojunction‐Like Quasi Metal‐Organic Framework Interface for Boosting Biocatalytic Disinfection. Small. [DOI: 10.1002/smll.202200178] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
210 Zheng J, Hu R, Yang Y, Wang Y, Wang Q, Xu S, Yao P, Liu Z, Zhou J, Yang J, Bao Y, Zhang D, Shen W, Zhou Z. Antibiotic-loaded reactive oxygen species-responsive nanomedicine for effective management of chronic bacterial prostatitis. Acta Biomater 2022;143:471-86. [PMID: 35259516 DOI: 10.1016/j.actbio.2022.02.044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
211 Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, Wu Z, Chen T. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials. Nano-Micro Lett 2022;14. [DOI: 10.1007/s40820-022-00847-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
212 Liu Y, Deng F, Zheng R, Chen X, Zhao L, Yu B, Chen A, Jiang X, Cheng H, Li S. Self-delivery nanomedicine for vascular disruption-supplemented chemo-photodynamic tumor therapy. J Colloid Interface Sci 2022;612:562-71. [PMID: 35026565 DOI: 10.1016/j.jcis.2021.12.128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
213 Yang B, Yao H, Yang J, Chen C, Shi J. Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat Commun 2022;13:1988. [PMID: 35418125 DOI: 10.1038/s41467-022-29735-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
214 Song C, Zhan Q, Liu F, Wang C, Li H, Wang X, Guo X, Cheng Y, Sun W, Wang L, Qian J, Pan B. Overturned Loading of Inert CeO2 to Active Co3 O4 for Unusually Improved Catalytic Activity in Fenton-Like Reactions. Angew Chem Int Ed Engl 2022;61:e202200406. [PMID: 35128779 DOI: 10.1002/anie.202200406] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
215 Yu J, Chen T, Guo X, Zafar MI, Li H, Wang Z, Zheng J. The Role of Oxidative Stress and Inflammation in X-Link Adrenoleukodystrophy. Front Nutr 2022;9:864358. [DOI: 10.3389/fnut.2022.864358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
216 Geng H, Ren Y, Qin G, Wen T, Liu Q, Xu H, He W. Ti3C2 nanosheets with broad-spectrum antioxidant activity for cytoprotection against oxidative stress. RSC Adv 2022;12:11128-38. [PMID: 35425035 DOI: 10.1039/d2ra01225a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
217 Liu Y, Wang Y, Song S, Zhang H. Cascade-responsive nanobomb with domino effect for anti-tumor synergistic therapies. Natl Sci Rev 2022;9:nwab139. [PMID: 35371516 DOI: 10.1093/nsr/nwab139] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
218 Nan F, Jia Q, Xue X, Wang S, Liu W, Wang J, Ge J, Wang P. Iron phthalocyanine-derived nanozyme as dual reactive oxygen species generation accelerator for photothermally enhanced tumor catalytic therapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
219 Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022;2:20210238. [DOI: 10.1002/exp.20210238] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
220 Yang H, Li J, Gu S, Wu Z, Luo L, Chen Y. Fabrication of hexagonal boron carbonitride nanoplates using for in vitro photodynamic therapy and chemo therapy. Colloids Surf B Biointerfaces 2022;212:112377. [PMID: 35121428 DOI: 10.1016/j.colsurfb.2022.112377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
221 Wang Z, Jia R, Chen Y, Xie X, Wang S, Huang J, Zhou M, Cai K, Zhang J. Supramolecular semiquinone radicals confined with DNAzymes for dissipative ROS generation and therapy. Nano Today 2022;43:101402. [DOI: 10.1016/j.nantod.2022.101402] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
222 Liang X, Li H, Li X, Tian X, Zhang A, Luo Q, Duan J, Chen Y, Pang L, Li C, Liang X, Zeng Y, Yang J. Highly sensitive H2O2-scavenging nano-bionic system for precise treatment of atherosclerosis. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.04.002] [Reference Citation Analysis]
223 Fu L, Ma X, Liu Y, Xu Z, Sun Z. Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death. Chinese Chemical Letters 2022;33:1718-28. [DOI: 10.1016/j.cclet.2021.10.074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
224 Wan QQ, Jiao K, Ma YX, Gao B, Mu Z, Wang YR, Wang YH, Duan L, Xu KH, Gu JT, Yan JF, Li J, Shen MJ, Tay FR, Niu LN. Smart, Biomimetic Periosteum Created from the Cerium(III, IV) Oxide-Mineralized Eggshell Membrane. ACS Appl Mater Interfaces 2022;14:14103-19. [PMID: 35306805 DOI: 10.1021/acsami.2c02079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
225 Cao M, Chang Z, Tan J, Wang X, Zhang P, Lin S, Liu J, Li A. Superoxide Radical-Mediated Self-Synthesized Au/MoO3-x Hybrids with Enhanced Peroxidase-like Activity and Photothermal Effect for Anti-MRSA Therapy. ACS Appl Mater Interfaces 2022;14:13025-37. [PMID: 35285619 DOI: 10.1021/acsami.1c23676] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 27.0] [Reference Citation Analysis]
226 Li X, Kong R, Li Y, Huang J, Zhou X, Li S, Cheng H. Carrier-free nanomedicine for enhanced photodynamic tumor therapy through glutathione S-transferase inhibition. Chem Commun (Camb) 2022;58:3917-20. [PMID: 35237781 DOI: 10.1039/d2cc00235c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
227 Song Z, Liu T, Lai H, Meng X, Yang L, Su J, Chen T. A Universally EDTA-Assisted Synthesis of Polytypic Bismuth Telluride Nanoplates with a Size-Dependent Enhancement of Tumor Radiosensitivity and Metabolism In Vivo. ACS Nano 2022;16:4379-96. [PMID: 35175721 DOI: 10.1021/acsnano.1c10663] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
228 Yan M, Zhang Y, Wu Z, Li Y, Dou K, Wang B, Wang Y, Zhou Q. Recent progress in advanced biomaterials for long-acting reversible contraception. J Nanobiotechnology 2022;20:138. [PMID: 35300702 DOI: 10.1186/s12951-022-01329-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
229 Su J, Lu S, Wei Z, Li B, Li J, Sun J, Liu K, Zhang H, Wang F. Biocompatible Inorganic Nanoagent for Efficient Synergistic Tumor Treatment with Augmented Antitumor Immunity. Small 2022;:e2200897. [PMID: 35289484 DOI: 10.1002/smll.202200897] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
230 Zhou J, Wang K, Ding S, Zeng L, Miao J, Cao Y, Zhang X, Tian G, Bian XW. Anti-VEGFR2-labeled enzyme-immobilized metal-organic frameworks for tumor vasculature targeted catalytic therapy. Acta Biomater 2022;141:364-73. [PMID: 35063709 DOI: 10.1016/j.actbio.2022.01.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
231 Ma W, Zhang H, Li S, Wang Z, Wu X, Yan R, Geng F, Mu W, Jin Y. A Multifunctional Nanoplatform Based on Fenton-like and Russell Reactions of Cu, Mn Bimetallic Ions Synergistically Enhanced ROS Stress for Improved Chemodynamic Therapy. ACS Biomater Sci Eng 2022;8:1354-66. [PMID: 35230802 DOI: 10.1021/acsbiomaterials.1c01605] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
232 Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01343-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
233 Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022;13:837293. [DOI: 10.3389/fimmu.2022.837293] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
234 Li S, Li F, Dong Y, Song N, Pan L, Yang D. Synthesis and Catalytic Property of Ribonucleoside-Derived Carbon Dots. Small 2022;:e2106269. [PMID: 35266630 DOI: 10.1002/smll.202106269] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
235 Kim J, Sun J, Zhao Y, Wen J, Zhou B, Zhang Z, Mo S, Wang J, Liu H, Wang G, Yu Q, Liu M. Electronic Structure Modulation of Ag2 S by Vacancy Engineering for Efficient Bacterial Infection. Small 2022;:e2107807. [PMID: 35261157 DOI: 10.1002/smll.202107807] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
236 Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
237 Pradeep H, M B, Suresh S, Thadathil A, Periyat P. Recent trends and advances in polyindole-based nanocomposites as potential antimicrobial agents: a mini review. RSC Adv 2022;12:8211-27. [PMID: 35424771 DOI: 10.1039/d1ra09317g] [Reference Citation Analysis]
238 Zhu Y, Wan C, Lin J, Hammes H, Zhang C. Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022;12:403. [DOI: 10.3390/biom12030403] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
239 Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
240 Wang B, Zhang L, Zheng J, Bao H, Li D. Rhodol-Based Fluorescent Probes Used for Fast Response toward ClO– and Delayed Determination of H2O2 in Living Cells. Synthesis. [DOI: 10.1055/a-1786-1584] [Reference Citation Analysis]
241 Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
242 Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
243 Chen J, Cao Y, Lin S, Niu H, Zhang H, Guan L, Shu C, Wu A, Bian Y, Zhu Y. A responsive microneedle system for efficient anti-melanoma by combining self-enhanced chemodynamic therapy with photothermal therapy. Chemical Engineering Journal 2022;431:133466. [DOI: 10.1016/j.cej.2021.133466] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
244 Yao Y, Li A, Wang S, Lu Y, Xie J, Zhang H, Zhang D, Ding J, Wang Z, Tu C, Shen L, Zhuang L, Zhu Y, Gao C. Multifunctional elastomer cardiac patches for preventing left ventricle remodeling after myocardial infarction in vivo. Biomaterials 2022;282:121382. [DOI: 10.1016/j.biomaterials.2022.121382] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
245 He X, Xue J, Shi L, Kong Y, Zhan Q, Sun Y, Zhang Q, Ramakrishna S, Dai Y. Recent antioxidative nanomaterials toward wound dressing and disease treatment via ROS scavenging. Materials Today Nano 2022;17:100149. [DOI: 10.1016/j.mtnano.2021.100149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
246 Ma X, Gong H, Ogino K, Yan X, Xing R. Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals. Beilstein J Nanotechnol 2022;13:284-91. [DOI: 10.3762/bjnano.13.23] [Reference Citation Analysis]
247 Mao Z, Xiong J, Wang P, An J, Zhang F, Liu Z, Seung Kim J. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coordination Chemistry Reviews 2022;454:214356. [DOI: 10.1016/j.ccr.2021.214356] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 21.0] [Reference Citation Analysis]
248 Xiong J, Wang P, Son S, Zhong C, Zhang F, Mao Z, Liu Z, Kim JS. Engineering a theranostic platform for synergistic hypoxia-responsive photodynamic therapy and chemotherapy. Matter 2022. [DOI: 10.1016/j.matt.2022.02.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
249 Geng X, Chen Y, Chen Z, Wei X, Dai Y, Yuan Z. Oxygen-carrying biomimetic nanoplatform for sonodynamic killing of bacteria and treatment of infection diseases. Ultrasonics Sonochemistry 2022;84:105972. [DOI: 10.1016/j.ultsonch.2022.105972] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
250 Nasseri B, Alizadeh E, Bani F, Davaran S, Akbarzadeh A, Rabiee N, Bahadori A, Ziaei M, Bagherzadeh M, Saeb MR, Mozafari M, Hamblin MR. Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews 2022;9:011317. [DOI: 10.1063/5.0047672] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
251 Li J, Wang J, Zhang D, Cui T, Xu Z, Jiang X. Synthesis, structure and photochemical properties of asymmetric NMe2-bearing aza-BODIPYs as novel photothermal agents. Dyes and Pigments 2022;199:110092. [DOI: 10.1016/j.dyepig.2022.110092] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
252 Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, Lee J, Sullenger B, Leong KW. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater 2022;:1-18. [PMID: 35251702 DOI: 10.1038/s41578-022-00426-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 20.0] [Reference Citation Analysis]
253 Nirosha Yalamandala B, Chen P, Moorthy T, Huynh TMH, Chiang W, Hu S. Programmed Catalytic Therapy-Mediated ROS Generation and T-Cell Infiltration in Lung Metastasis by a Dual Metal-Organic Framework (MOF) Nanoagent. Pharmaceutics 2022;14:527. [DOI: 10.3390/pharmaceutics14030527] [Reference Citation Analysis]
254 Huang J, Zhao L, Zhou X, Liu L, Zheng R, Deng F, Liu Y, Yu X, Li S, Cheng H. Carrier Free O 2 ‐Economizer for Photodynamic Therapy Against Hypoxic Tumor by Inhibiting Cell Respiration. Small. [DOI: 10.1002/smll.202107467] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
255 Mendonça PSS, Dos Santos JR, de Oliveira OV, Dos Santos JD, Longo E. Single-walled silicon nanotube as an exceptional candidate to eliminate SARS-CoV-2: a theoretical study. J Biomol Struct Dyn 2022;:1-10. [PMID: 35220919 DOI: 10.1080/07391102.2022.2045220] [Reference Citation Analysis]
256 Yao M, Han W, Feng L, Wei Z, Liu Y, Zhang H, Zhang S. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem 2022;233:114236. [PMID: 35247753 DOI: 10.1016/j.ejmech.2022.114236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
257 Bogas AC, Henrique Rodrigues S, Gonçalves MO, De Assis M, Longo E, Paiva De Sousa C. Endophytic Microorganisms From the Tropics as Biofactories for the Synthesis of Metal-Based Nanoparticles: Healthcare Applications. Front Nanotechnol 2022;4:823236. [DOI: 10.3389/fnano.2022.823236] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
258 Sun F, Wang Y, Wang Q, Wang X, Yao P, Feng W, Yuan Q, Qi X, Chen S, Pu W, Huang R, Dai Q, Lv J, Wang Q, Shen W, Xia P, Zhang D. Self-Illuminating Triggered Release of Therapeutics from Photocleavable Nanoprodrug for the Targeted Treatment of Breast Cancer. ACS Appl Mater Interfaces 2022;14:8766-81. [PMID: 35166116 DOI: 10.1021/acsami.1c21665] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
259 Song C, Zhan Q, Liu F, Wang C, Li H, Wang X, Guo X, Cheng Y, Sun W, Wang L, Qian J, Pan B. Overturned Loading of Inert CeO 2 to Active Co 3 O 4 for Unusually Improved Catalytic Activity in Fenton‐Like Reactions. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202200406] [Reference Citation Analysis]
260 Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. [DOI: 10.1038/s41580-022-00456-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 59] [Article Influence: 47.0] [Reference Citation Analysis]
261 Mo S, Song Y, Lin M, Wang J, Zhang Z, Sun J, Guo D, Liu L. Near-infrared responsive sulfur vacancy-rich CuS nanosheets for efficient antibacterial activity via synergistic photothermal and photodynamic pathways. J Colloid Interface Sci 2022;608:2896-906. [PMID: 34785058 DOI: 10.1016/j.jcis.2021.11.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
262 Akshaykranth A, Jayarambabu N, Venkatappa Rao T, Rakesh Kumar R, Srinivasa Rao L. Antibacterial activity study of ZnO incorporated biodegradable poly (lactic acid) films for food packaging applications. Polym Bull . [DOI: 10.1007/s00289-022-04126-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
263 Zhang Y, Yu Y, Gao J. Supramolecular Nanomedicines of In-Situ Self-Assembling Peptides. Front Chem 2022;10:815551. [DOI: 10.3389/fchem.2022.815551] [Reference Citation Analysis]
264 Peng L, Yang X, Wang S, Chan YK, Chen Y, Yang Z, Mao Y, Li L, Yang W, Deng Y. Bimetal metal-organic framework domino micro-reactor for synergistic antibacterial starvation/chemodynamic therapy and robust wound healing. Nanoscale 2022;14:2052-64. [PMID: 35076646 DOI: 10.1039/d1nr07611f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
265 Wang Q, Qu B, Li J, Liu Y, Dong J, Peng X, Zhang R. Multifunctional MnO2/Ag3SbS3 Nanotheranostic Agent for Single-Laser-Triggered Tumor Synergistic Therapy in the NIR-II Biowindow. ACS Appl Mater Interfaces 2022;14:4980-94. [PMID: 35050589 DOI: 10.1021/acsami.1c21752] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
266 Zhu Y, Zhao T, Liu M, Wang S, Liu S, Yang Y, Yang Y, Nan Y, Huang Q, Ai K. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today 2022;42:101358. [DOI: 10.1016/j.nantod.2021.101358] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
267 Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Adv Sci (Weinh) 2022;9:e2103444. [PMID: 34927373 DOI: 10.1002/advs.202103444] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
268 Dong S, Dong Y, Liu B, Liu J, Liu S, Zhao Z, Li W, Tian B, Zhao R, He F, Gai S, Xie Y, Yang P, Zhao Y. Guiding Transition Metal-Doped Hollow Cerium Tandem Nanozymes with Elaborately Regulated Multi-Enzymatic Activities for Intensive Chemodynamic Therapy. Adv Mater 2022;34:e2107054. [PMID: 34865269 DOI: 10.1002/adma.202107054] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 25.0] [Reference Citation Analysis]
269 Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022;300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
270 Pirouzmand M, Nikzad Kojanag B, Hosseini‐yazdi SA, Aghabeigy N. Green synthesis of cobalt and iron incorporated citric acid/ β ‐cyclodextrin composites: Efficient H 2 O 2 scavengers. Applied Organom Chemis 2022;36. [DOI: 10.1002/aoc.6505] [Reference Citation Analysis]
271 Zhao LP, Chen SY, Zheng RR, Kong RJ, Rao XN, Chen AL, Cheng H, Zhang DW, Li SY, Yu XY. Self-Delivery Nanomedicine for Glutamine-Starvation Enhanced Photodynamic Tumor Therapy. Adv Healthc Mater 2022;11:e2102038. [PMID: 34729950 DOI: 10.1002/adhm.202102038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
272 Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100215] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
273 Gao P, Wang H, Cheng Y. Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. Chinese Chemical Letters 2022;33:575-86. [DOI: 10.1016/j.cclet.2021.08.023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
274 Wang X, Li Z, Zhang Y, Li Q, Du H, Liu F, Zhang X, Mu H, Duan J. Enhanced photocatalytic antibacterial and degradation performance by p-n-p type CoFe2O4/CoFe2S4/MgBi2O6 photocatalyst under visible light irradiation. Chemical Engineering Journal 2022;429:132270. [DOI: 10.1016/j.cej.2021.132270] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
275 Ma Y, Duan L, Sun J, Gou S, Chen F, Liang Y, Dai F, Xiao B. Oral nanotherapeutics based on Antheraea pernyi silk fibroin for synergistic treatment of ulcerative colitis. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121410] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
276 Paul S, Thakur NS, Chandna S, Sagar V, Bhaumik J. Lignin-Based CdS Dots as Multifunctional Platforms for Sensing and Wearable Photodynamic Coatings. ACS Appl Nano Mater 2022;5:2748-61. [DOI: 10.1021/acsanm.1c04427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
277 Cho M, Nguyen V, Yoon J. Simultaneous Detection of Hypochlorite and Singlet Oxygen by a Thiocoumarin-Based Ratiometric Fluorescent Probe. ACS Meas Au. [DOI: 10.1021/acsmeasuresciau.1c00055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
278 Dadadzhanova A, Kolesova E, Maslov V, Amar-lewis E, Goldbart R, Traitel T, Kost J, Orlova A. Sonodynamic effect in A375 melanoma cells with chlorin e6 induced by 20 kHz ultrasound. J Phys D: Appl Phys 2022;55:045402. [DOI: 10.1088/1361-6463/ac2f16] [Reference Citation Analysis]
279 Zeng W, Ren J, Li Z, Jiang C, Sun Q, Li C, Li W, Li W, He Q. Levistolide A Inhibits PEDV Replication via Inducing ROS Generation. Viruses 2022;14:258. [DOI: 10.3390/v14020258] [Reference Citation Analysis]
280 Ge K, Mu Y, Liu M, Bai Z, Liu Z, Geng D, Gao F. Gold Nanorods with Spatial Separation of CeO2 Deposition for Plasmonic-Enhanced Antioxidant Stress and Photothermal Therapy of Alzheimer's Disease. ACS Appl Mater Interfaces 2022;14:3662-74. [PMID: 35023712 DOI: 10.1021/acsami.1c17861] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
281 Cao C, Wang X, Yang N, Song X, Dong X. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem Sci 2022;13:863-89. [PMID: 35211255 DOI: 10.1039/d1sc05482a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 25.0] [Reference Citation Analysis]
282 Luo T, Tan B, Zhu L, Wang Y, Liao J. A Review on the Design of Hydrogels With Different Stiffness and Their Effects on Tissue Repair. Front Bioeng Biotechnol 2022;10:817391. [DOI: 10.3389/fbioe.2022.817391] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
283 Zhao D, Zhang W, Wu Z, Xu H. Nanoscale Metal−Organic Frameworks and Their Nanomedicine Applications. Front Chem 2022;9:834171. [DOI: 10.3389/fchem.2021.834171] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
284 Li Y, Yang J, Gu G, Guo X, He C, Sun J, Zou H, Wang H, Liu S, Li X, Zhang S, Wang K, Yang L, Jiang Y, Wu L, Sun X. Pulmonary Delivery of Theranostic Nanoclusters for Lung Cancer Ferroptosis with Enhanced Chemodynamic/Radiation Synergistic Therapy. Nano Lett 2022. [PMID: 35073699 DOI: 10.1021/acs.nanolett.1c03786] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
285 Lu J, Jiang Z, Ren J, Zhang W, Li P, Chen Z, Zhang W, Wang H, Tang B. One‐Pot Synthesis of Multifunctional Carbon‐Based Nanoparticle‐Supported Dispersed Cu 2+ Disrupts Redox Homeostasis to Enhance CDT. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202114373] [Reference Citation Analysis]
286 Rampin A, Carabba M, Mutoli M, Eman CL, Testa G, Madeddu P, Spinetti G. Recent advances in KEAP1/Nrf2-targeting strategies by phytochemical antioxidants, nanoparticles, and biocompatible scaffolds for the treatment of diabetic cardiovascular complications. Antioxid Redox Signal 2022. [PMID: 35044251 DOI: 10.1089/ars.2021.0134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
287 Manivasagan P, Joe A, Han HW, Thambi T, Selvaraj M, Chidambaram K, Kim J, Jang ES. Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater Today Bio 2022;13:100197. [PMID: 35036895 DOI: 10.1016/j.mtbio.2021.100197] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
288 Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. Small 2022;:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
289 Ju YY, Shi XX, Xu SY, Ma XH, Wei RJ, Hou H, Chu CC, Sun D, Liu G, Tan YZ. Atomically Precise Water-Soluble Graphene Quantum Dot for Cancer Sonodynamic Therapy. Adv Sci (Weinh) 2022;:e2105034. [PMID: 35038238 DOI: 10.1002/advs.202105034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
290 He Y, Chen Z, Nie X, Wang D, Zhang Q, Peng T, Zhang C, Wu D, Zhang J. Recent advances in polysaccharides from edible and medicinal Polygonati rhizoma: From bench to market. Int J Biol Macromol 2022;195:102-16. [PMID: 34896461 DOI: 10.1016/j.ijbiomac.2021.12.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
291 Zhao C, Wang X, Yu L, Wu L, Hao X, Liu Q, Lin L, Huang Z, Ruan Z, Weng S, Liu A, Lin X. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria. Acta Biomater 2022;138:528-44. [PMID: 34775123 DOI: 10.1016/j.actbio.2021.11.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
292 Bochkova O, Dovjenko A, Zairov R, Kholin K, Biktimirova R, Fedorenko S, Nizameev I, Laskin A, Voloshina A, Lyubina A, Amerhanova S, Daminova A, Evtugyn V, Gerasimova T, Mustafina A. Silica-Supported Assemblage of CuII Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation. Coatings 2022;12:97. [DOI: 10.3390/coatings12010097] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
293 Zhao LP, Zheng RR, Kong RJ, Huang CY, Rao XN, Yang N, Chen AL, Yu XY, Cheng H, Li SY. Self-Delivery Ternary Bioregulators for Photodynamic Amplified Immunotherapy by Tumor Microenvironment Reprogramming. ACS Nano 2022. [PMID: 35023720 DOI: 10.1021/acsnano.1c08978] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
294 Wang S, Xu J, Li W, Sun S, Gao S, Hou Y. Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chem Rev 2022. [PMID: 35014799 DOI: 10.1021/acs.chemrev.1c00370] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
295 Nikiforov A, Ma C, Choukourov A, Palumbo F. Plasma technology in antimicrobial surface engineering. Journal of Applied Physics 2022;131:011102. [DOI: 10.1063/5.0066724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
296 Jiang Q, Qiao B, Lin X, Cao J, Zhang N, Guo H, Liu W, Zhu L, Xie X, Wan L, Tang R, Liang B, Wang D, Wang Z, Zhou Y, Ran H, Li P. A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Theranostics 2022;12:59-75. [PMID: 34987634 DOI: 10.7150/thno.64862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
297 Cheng Y, Ji Y, Ouyang D. FC-BBR/IND-induced glucose oxidase nanodrugs for targeted combination therapy. Int J Pharm 2022;611:121349. [PMID: 34871713 DOI: 10.1016/j.ijpharm.2021.121349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
298 Peng R, Luo Y, Cui Q, Yao C, Xu W, Li L. Conjugated Oligomer‐Directed Formation of Hollow Nanoparticles for Targeted Photokilling Cancer Cells under Hypoxia. Advanced Optical Materials 2022;10:2102377. [DOI: 10.1002/adom.202102377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
299 Fan X, Wu X, Yang F, Wang L, Ludwig K, Ma L, Trampuz A, Cheng C, Haag R. A Nanohook‐Equipped Bionanocatalyst for Localized Near‐Infrared‐Enhanced Catalytic Bacterial Disinfection. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202113833] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
300 Wang S, Zhang L, Luo Y, Bai Y, Huang Y, Zhao S. A Circular Dichroism and Photoacoustic Dual-Mode Probe for Detection In Vitro and Imaging In Vivo of Hydroxyl Radicals. Anal Chem . [DOI: 10.1021/acs.analchem.1c04237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
301 Victória HFV, Ferreira DC, Gabriel JB, Martins DCS, Pinheiro MVB, de A M Safar G, Krambrock K. Detection of singlet oxygen by EPR: The instability of the nitroxyl radicals. Free Radic Biol Med 2021:S0891-5849(21)01155-2. [PMID: 34979255 DOI: 10.1016/j.freeradbiomed.2021.12.303] [Reference Citation Analysis]
302 Lee YJ, Kim H, Kim Y, Cho KH, Hong S, Nam KT, Kim SH, Choi CH, Seo J. Repurposing a peptide antibiotic as a catalyst: a multicopper–daptomycin complex as a cooperative O–O bond formation and activation catalyst. Inorg Chem Front . [DOI: 10.1039/d2qi01440h] [Reference Citation Analysis]
303 Haque S, Tripathy S, Patra CR. Graphene Based Nanomaterials for ROS-Mediated Cancer Therapeutics. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_128-1] [Reference Citation Analysis]
304 Moin I, Mittal D, Verma AK. Understanding ROS-Induced DNA Damage for Therapeutics. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2022. [DOI: 10.1007/978-981-15-9411-3_53] [Reference Citation Analysis]
305 Haque S, Tripathy S, Patra CR. Graphene-Based Nanomaterials for ROS-Mediated Cancer Therapeutics. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_128] [Reference Citation Analysis]
306 Nair LV, Nair RV, Jayasree RS. Metal nanoclusters as photosensitizers. Luminescent Metal Nanoclusters 2022. [DOI: 10.1016/b978-0-323-88657-4.00017-x] [Reference Citation Analysis]
307 Qu A, Xu L, Xu C, Kuang H. Chiral nanomaterials for biosensing, bioimaging, and disease therapies. Chem Commun 2022. [DOI: 10.1039/d2cc04420j] [Reference Citation Analysis]
308 Ouyang J, Sun L, Zeng F, Wu S. Rational design of stable heptamethine cyanines and development of a biomarker-activatable probe for detecting acute lung/kidney injuries via NIR-II fluorescence imaging. Analyst 2022;147:410-416. [DOI: 10.1039/d1an02183d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
309 Léonard E, Jeux V. Illuminating metal oxides containing luminescent probes for personalized medicine. Metal Oxides for Optoelectronics and Optics-Based Medical Applications 2022. [DOI: 10.1016/b978-0-323-85824-3.00015-4] [Reference Citation Analysis]
310 Hidalgo T, Simón-vázquez R, González-fernández A, Horcajada P. Cracking the immune fingerprint of metal–organic frameworks. Chem Sci . [DOI: 10.1039/d1sc04112f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
311 Qian M, Cheng Z, Luo G, Galluzzi M, Shen Y, Li Z, Yang H, Yu XF. Molybdenum Diphosphide Nanorods with Laser-Potentiated Peroxidase Catalytic/Mild-Photothermal Therapy of Oral Cancer. Adv Sci (Weinh) 2022;9:2101527. [PMID: 35059282 DOI: 10.1002/advs.202101527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
312 Mozafari F, Rashidzadeh H, Ghaffarlou M, Salehiabar M, Ertas YN, Ramazani A, Abazari M, Rahmati M, Javed Y, Sharma SK, Danafar H. ROS-Based Cancer Radiotherapy. Harnessing Materials for X-ray Based Cancer Therapy and Imaging 2022. [DOI: 10.1007/978-3-031-04071-9_10] [Reference Citation Analysis]
313 Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022. [DOI: 10.1039/d1cs01145f] [Reference Citation Analysis]
314 Kang S, Wang H, Su Z, Lu L, Huang S, Yu Y, Chen X. Photo-regulated dual-functional zinc oxide nanocomposite for synergistic sterilization and antioxidant treatment. New J Chem . [DOI: 10.1039/d2nj02667h] [Reference Citation Analysis]
315 Potnis NS, Ali A, Pal S. Recent Developments in ROS-Based Nanotherapeutic Modalities in Preclinical Cancer Treatment. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_261] [Reference Citation Analysis]
316 García MC. Stimuli-responsive nanogels as promising carriers for controlled delivery of anticancer therapeutics. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00005-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
317 Yawalkar MM, Menon S, Swart HC, Dhoble SJ. Fundamentals of photodynamic therapy. Photophysics and Nanophysics in Therapeutics 2022. [DOI: 10.1016/b978-0-323-89839-3.00016-6] [Reference Citation Analysis]
318 Xu X, Li Q, Zhang J. Reactive Oxygen Species-Responsive and Self-Illuminating Nanoparticles for Inflammation and Tumor Imaging. Bioluminescence 2022. [DOI: 10.1007/978-1-0716-2473-9_3] [Reference Citation Analysis]
319 Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coordination Chemistry Reviews 2022;450:214240. [DOI: 10.1016/j.ccr.2021.214240] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 25.0] [Reference Citation Analysis]
320 Kyzioł A, Orzeł Ł, Gurgul I, Mazuryk O, Łabuz P, Stochel G. Mechanistic insight into photoactivation of small inorganic molecules from the biomedical applications perspectives. Biomedical Applications of Inorganic Photochemistry 2022. [DOI: 10.1016/bs.adioch.2022.06.004] [Reference Citation Analysis]
321 Chen L, Wang X, Yuan Y, Hu R, Chen Q, Zhu L, Gu M, Shen C. Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.01.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
322 Horak VJ, Mishory A, Baisiwala S, Ahmed AU. Understanding the Role of Plasticity in Glioblastoma. Comprehensive Pharmacology 2022. [DOI: 10.1016/b978-0-12-820472-6.00062-1] [Reference Citation Analysis]
323 Wang Q, Li X, Mao J, Qin X, Yang S, Hao J, Guan M, Cao Y, Li Y. Biomimic Binding Affinity Gradients Triggered GSH-Response of Core-Shell Nanoparticles for Cascade Chemo/Chemodynamic Therapy. Adv Healthc Mater 2022;11:e2101634. [PMID: 34706163 DOI: 10.1002/adhm.202101634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
324 Lihi N, Fábián I. Insight into the thermodynamic and catalytic features of NiSOD related metallopeptides. Recent Highlights II 2022. [DOI: 10.1016/bs.adioch.2021.12.001] [Reference Citation Analysis]
325 Potnis NS, Ali A, Pal S. Recent Developments in ROS-Based Nanotherapeutic Modalities in Preclinical Cancer Treatment. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_261-1] [Reference Citation Analysis]
326 Musib D, Ramu V, Raza MK, Upadhyay A, Pal M, Kunwar A, Roy M. La( iii )–curcumin-functionalized gold nanocomposite as a red light-activatable mitochondria-targeting PDT agent. Inorg Chem Front . [DOI: 10.1039/d1qi01045j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
327 曾 沛. New Progress of Black Phosphorus in Antitumor Therapy. ACM 2022;12:9030-9036. [DOI: 10.12677/acm.2022.12101306] [Reference Citation Analysis]
328 Zhang L, Li CX, Wan SS, Zhang XZ. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022;11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
329 Wang L, Zhang M, Gao X, Li J, Wu M, Zhang X, Ye Z. Multifunctional nanoprobes combined with radiotherapy and hypoxia-activated therapy synergistically improve antitumor efficacy. RSC Adv 2022;12:32297-32306. [DOI: 10.1039/d2ra04690c] [Reference Citation Analysis]
330 Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews 2022;451:214267. [DOI: 10.1016/j.ccr.2021.214267] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
331 Chu H, Li Y, Wang C, Shen J, Wei Y. MOF-coated upconversion nanoconstructs for synergetic photo-chemodynamic/oxygen-elevated photodynamic therapy. Dalton Trans 2022;51:16336-16343. [DOI: 10.1039/d2dt02441a] [Reference Citation Analysis]
332 Xing Y, Wang L, Wang L, Huang J, Wang S, Xie X, Zhu J, Ding T, Cai K, Zhang J. Flower‐Like Nanozymes with Large Accessibility of Single Atom Catalysis Sites for ROS Generation Boosted Tumor Therapy. Adv Funct Materials 2022;32:2111171. [DOI: 10.1002/adfm.202111171] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
333 Qin J, Sun X, Ma Y, Cheng Y, Ma Q, Jing W, Qu S, Liu L. Design, synthesis and biological evaluation of novel 1,3,4,9-tetrahydropyrano[3,4-b]indoles as potential treatment of triple negative breast cancer by suppressing PI3K/AKT/mTOR pathway. Bioorg Med Chem 2021;55:116594. [PMID: 34990979 DOI: 10.1016/j.bmc.2021.116594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
334 Ouyang H, Xian J, Luo S, Zhang L, Wang W, Fu Z. Emitter-Quencher Pair of Single Atomic Co Sites and Monolayer Titanium Carbide MXenes for Luminol Chemiluminescent Reactions. ACS Appl Mater Interfaces 2021;13:60945-54. [PMID: 34914377 DOI: 10.1021/acsami.1c20489] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
335 Xu XL, Zhang NN, Shu GF, Liu D, Qi J, Jin FY, Ji JS, Du YZ. A Luminol-Based Self-Illuminating Nanocage as a Reactive Oxygen Species Amplifier to Enhance Deep Tumor Penetration and Synergistic Therapy. ACS Nano 2021;15:19394-408. [PMID: 34806870 DOI: 10.1021/acsnano.1c05891] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
336 Jana D, Wang D, Rajendran P, Bindra AK, Guo Y, Liu J, Pramanik M, Zhao Y. Hybrid Carbon Dot Assembly as a Reactive Oxygen Species Nanogenerator for Ultrasound-Assisted Tumor Ablation. JACS Au 2021;1:2328-38. [PMID: 34977901 DOI: 10.1021/jacsau.1c00422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
337 Li X, Wang Y, Li M, Wang H, Dong X. Metal Complexes or Chelators with ROS Regulation Capacity: Promising Candidates for Cancer Treatment. Molecules 2021;27:148. [PMID: 35011380 DOI: 10.3390/molecules27010148] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
338 Geng H, Gao D, Wang Z, Liu X, Cao Z, Xing C. Strategies for Inhibition and Disaggregation of Amyloid‐β Fibrillation. Chin J Chem 2022;40:524-38. [DOI: 10.1002/cjoc.202100646] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
339 Wang A, Fang J, Ye S, Mao Q, Zhao Y, Cui C, Zhang Y, Feng Y, Li J, He L, Qiu L, Shi H. Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy. ACS Appl Mater Interfaces 2021;13:59787-802. [PMID: 34894664 DOI: 10.1021/acsami.1c21062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
340 Chen M, Yang J, Zhou L, Hu X, Wang C, Chai K, Li R, Feng L, Sun Y, Dong C, Shi S. Dual-Responsive and ROS-Augmented Nanoplatform for Chemo/Photodynamic/Chemodynamic Combination Therapy of Triple Negative Breast Cancer. ACS Appl Mater Interfaces 2021. [PMID: 34935343 DOI: 10.1021/acsami.1c14135] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
341 Xie P, Jin Q, Li Y, Zhang J, Kang X, Zhu J, Mao X, Cao P, Liu C. Nanoparticle delivery of a triple-action Pt(IV) prodrug to overcome cisplatin resistance via synergistic effect. Biomater Sci 2021;10:153-7. [PMID: 34811566 DOI: 10.1039/d1bm01556g] [Reference Citation Analysis]
342 Riduan SN, Zhang Y. Nanostructured Surfaces with Multimodal Antimicrobial Action. Acc Chem Res 2021;54:4508-17. [PMID: 34874710 DOI: 10.1021/acs.accounts.1c00542] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
343 Kong B, Yang T, Cheng F, Qian Y, Li C, Zhan L, Li Y, Zou H, Huang C. Carbon dots as nanocatalytic medicine for anti-inflammation therapy. J Colloid Interface Sci 2021;611:545-53. [PMID: 34971965 DOI: 10.1016/j.jcis.2021.12.107] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
344 Lee DJ, Juvekar V, Lee HW, Kim ES, Noh CK, Shin SJ, Kim HM. Cancer-Targeted Azo Dye for Two-Photon Photodynamic Therapy in Human Colon Tissue. Anal Chem 2021;93:16821-7. [PMID: 34886662 DOI: 10.1021/acs.analchem.1c03429] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
345 Jiang Y, Liu Y, Wang M, Li Z, Su L, Xu X, Xing C, Li J, Lin L, Lu C, Yang H. siRNA-Based Carrier-Free System for Synergistic Chemo/Chemodynamic/RNAi Therapy of Drug-Resistant Tumors. ACS Appl Mater Interfaces 2021. [PMID: 34931793 DOI: 10.1021/acsami.1c20898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
346 Hua Y, Wang Y, Kang X, Xu F, Han Z, Zhang C, Wang ZY, Liu JQ, Zhao X, Chen X, Zang SQ. A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. J Nanobiotechnology 2021;19:438. [PMID: 34930279 DOI: 10.1186/s12951-021-01191-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
347 Wang Y, Jia S, Yu Z, Wen H, Cui H. Insights Into the Detection Selectivity of Redox and Non-redox Based Probes for the Superoxide Anion Using Coumarin and Chromone as the Fluorophores. Front Chem 2021;9:753621. [PMID: 34912779 DOI: 10.3389/fchem.2021.753621] [Reference Citation Analysis]
348 Zwiehoff S, Johny J, Behrends C, Landmann A, Mentzel F, Bäumer C, Kröninger K, Rehbock C, Timmermann B, Barcikowski S. Enhancement of Proton Therapy Efficiency by Noble Metal Nanoparticles Is Driven by the Number and Chemical Activity of Surface Atoms. Small 2021;:e2106383. [PMID: 34921500 DOI: 10.1002/smll.202106383] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
349 Su Y, Wu F, Song Q, Wu M, Mohammadniaei M, Zhang T, Liu B, Wu S, Zhang M, Li A, Shen J. Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 2021;281:121325. [PMID: 34953332 DOI: 10.1016/j.biomaterials.2021.121325] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 21.0] [Reference Citation Analysis]
350 Wang H, Yang W, Bian K, Zeng W, Jin X, Ouyang R, Xu Y, Dai C, Zhou S, Zhang B. Oxygen-Deficient BiOCl Combined with L-Buthionine-Sulfoximine Synergistically Suppresses Tumor Growth through Enhanced Singlet Oxygen Generation under Ultrasound Irradiation. Small 2021;:e2104550. [PMID: 34910856 DOI: 10.1002/smll.202104550] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
351 Hsiao TC, Chou LT, Pan SY, Young LH, Chi KH, Chen AY. Chemically and temporally resolved oxidative potential of urban fine particulate matter. Environ Pollut 2021;291:118206. [PMID: 34740290 DOI: 10.1016/j.envpol.2021.118206] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
352 Sun Y, Liu X, Wang L, Xu L, Liu K, Xu L, Shi F, Zhang Y, Gu N, Xiong F. High-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact Mater 2022;10:117-30. [PMID: 34901534 DOI: 10.1016/j.bioactmat.2021.08.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
353 Bosio GN, Mártire DO. Carbon nitride nanomaterials with application in photothermal and photodynamic therapies. Photodiagnosis Photodyn Ther 2021;37:102683. [PMID: 34915184 DOI: 10.1016/j.pdpdt.2021.102683] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
354 Yang B, Yao H, Yang J, Chen C, Guo Y, Fu H, Shi J. In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. J Am Chem Soc 2021. [PMID: 34881869 DOI: 10.1021/jacs.1c09993] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
355 Wang X, Wang H, Zhou S. Progress and Perspective on Carbon-Based Nanozymes for Peroxidase-like Applications. J Phys Chem Lett 2021;12:11751-60. [PMID: 34854687 DOI: 10.1021/acs.jpclett.1c03219] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
356 Chen R, Qiao D, Wang P, Li L, Zhang Y, Yan F. Gold Nanoclusters Exert Bactericidal Activity and Enhance Phagocytosis of Macrophage Mediated Killing of Fusobacterium nucleatum. Front Mater 2021;8:803871. [DOI: 10.3389/fmats.2021.803871] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
357 Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 33.0] [Reference Citation Analysis]
358 Che S, Zhang L, Wang T, Su D, Wang C. Graphitic Carbon Nitride‐Based Photocatalysts for Biological Applications. Advanced Sustainable Systems 2022;6:2100294. [DOI: 10.1002/adsu.202100294] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
359 Zhang L, Jiang C, Li B, Liu Z, Gu B, He S, Li P, Sun Y, Song S. A core-shell Au@Cu2-xSe heterogeneous metal nanocomposite for photoacoustic and computed tomography dual-imaging-guided photothermal boosted chemodynamic therapy. J Nanobiotechnology 2021;19:410. [PMID: 34876141 DOI: 10.1186/s12951-021-01159-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
360 Panchangam RL, Rao RN, Balamurali MM, Hingamire TB, Shanmugam D, Manickam V, Chanda K. Antitumor Effects of Ir(III)-2H-Indazole Complexes for Triple Negative Breast Cancer. Inorg Chem 2021;60:17593-607. [PMID: 34767343 DOI: 10.1021/acs.inorgchem.1c02193] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
361 Jiang Q, Fan L, Sun J, Hu J, He M, Hu B, Wang F, Liu X. Modulation of Oxidative Stress in Cancer Cells with a Biomineralized Converter. ACS Materials Lett 2021;3:1778-1785. [DOI: 10.1021/acsmaterialslett.1c00470] [Reference Citation Analysis]
362 Xie W, Zhang G, Guo Z, Lu J, Ye J, Xu W, Gao X, Yue K, Wei Y, Zhao L. Ultra‐Sensitive Iron‐Doped Palladium Nanocrystals with Enhanced Hydroxyl Radical Generation for Chemo‐/Chemodynamic Nanotherapy. Adv Funct Materials 2022;32:2107518. [DOI: 10.1002/adfm.202107518] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
363 Xu Z, Qu A, Wang W, Lu M, Shi B, Chen C, Hao C, Xu L, Sun M, Xu C, Kuang H. Facet-Dependent Biodegradable Mn3 O4 Nanoparticles for Ameliorating Parkinson's Disease. Adv Healthc Mater 2021;10:e2101316. [PMID: 34601811 DOI: 10.1002/adhm.202101316] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
364 Cao C, Zou H, Yang N, Li H, Cai Y, Song X, Shao J, Chen P, Mou X, Wang W, Dong X. Fe3 O4 /Ag/Bi2 MoO6 Photoactivatable Nanozyme for Self-Replenishing and Sustainable Cascaded Nanocatalytic Cancer Therapy. Adv Mater 2021;33:e2106996. [PMID: 34626026 DOI: 10.1002/adma.202106996] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 38.0] [Reference Citation Analysis]
365 Yang W, Yang X, Zhu L, Chu H, Li X, Xu W. Nanozymes: Activity origin, catalytic mechanism, and biological application. Coordination Chemistry Reviews 2021;448:214170. [DOI: 10.1016/j.ccr.2021.214170] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 29.0] [Reference Citation Analysis]
366 Liu Y, Wang Y, Song S, Zhang H. Tumor Diagnosis and Therapy Mediated by Metal Phosphorus-Based Nanomaterials. Adv Mater 2021;33:e2103936. [PMID: 34596931 DOI: 10.1002/adma.202103936] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
367 Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 2021;179:114004. [PMID: 34662672 DOI: 10.1016/j.addr.2021.114004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
368 Getachew G, Korupalli C, Rasal AS, Chang J. ROS generation/scavenging modulation of carbon dots as phototherapeutic candidates and peroxidase mimetics to integrate with polydopamine nanoparticles/GOx towards cooperative cancer therapy. Composites Part B: Engineering 2021;226:109364. [DOI: 10.1016/j.compositesb.2021.109364] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
369 Li H, Shang H, Jiang F, Zhu X, Ruan Q, Zhang L, Wang J. Plasmonic O2 dissociation and spillover expedite selective oxidation of primary C-H bonds. Chem Sci 2021;12:15308-17. [PMID: 34976351 DOI: 10.1039/d1sc04632b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
370 Bicalho HA, Quezada-novoa V, Howarth AJ. Metal–organic frameworks for the generation of reactive oxygen species. Chem Phys Rev 2021;2:041301. [DOI: 10.1063/5.0060141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
371 Balderrama-González AS, Piñón-Castillo HA, Ramírez-Valdespino CA, Landeros-Martínez LL, Orrantia-Borunda E, Esparza-Ponce HE. Antimicrobial Resistance and Inorganic Nanoparticles. Int J Mol Sci 2021;22:12890. [PMID: 34884695 DOI: 10.3390/ijms222312890] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
372 Elexpe A, Nieto N, Fernández-Cuétara C, Domínguez-Fernández C, Morera-Herreras T, Torrecilla M, Miguélez C, Laso A, Ochoa E, Bailen M, González-Coloma A, Angulo-Barturen I, Astigarraga E, Barreda-Gómez G. Study of Tissue-Specific Reactive Oxygen Species Formation by Cell Membrane Microarrays for the Characterization of Bioactive Compounds. Membranes (Basel) 2021;11:943. [PMID: 34940444 DOI: 10.3390/membranes11120943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
373 Chen M, Huang Z, Xia M, Ding Y, Shan T, Guan Z, Dai X, Xu X, Huang Y, Huang M, Zhao C. Glutathione-responsive copper-disulfiram nanoparticles for enhanced tumor chemotherapy. J Control Release 2021;341:351-63. [PMID: 34856225 DOI: 10.1016/j.jconrel.2021.11.041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
374 Shan B, Liu H, Li L, Lu Y, Li M. Near-Infrared II Plasmonic Phototheranostics with Glutathione Depletion for Multimodal Imaging-Guided Hypoxia-Tolerant Chemodynamic-Photocatalytic-Photothermal Cancer Therapy Triggered by a Single Laser. Small 2021;:e2105638. [PMID: 34821041 DOI: 10.1002/smll.202105638] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
375 Li J, Dai S, Qin R, Shi C, Ming J, Zeng X, Wen X, Zhuang R, Chen X, Guo Z, Zhang X. Ligand Engineering of Titanium-Oxo Nanoclusters for Cerenkov Radiation-Reinforced Photo/Chemodynamic Tumor Therapy. ACS Appl Mater Interfaces 2021;13:54727-38. [PMID: 34766763 DOI: 10.1021/acsami.1c16213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
376 Wang Y, Hao Y, Fa S, Zheng W, Yuan C, Wang W. Nanomedicine for the Diagnosis and Therapy of COVID-19. Front Bioeng Biotechnol 2021;9:758121. [PMID: 34805116 DOI: 10.3389/fbioe.2021.758121] [Reference Citation Analysis]
377 Lu J, Jiang Z, Ren J, Zhang W, Li P, Chen Z, Zhang W, Wang H, Tang B. One-Pot Synthesis of Multifunctional Carbon-Based Nanoparticle-Supported Dispersed Cu2+ Disrupts Redox Homeostasis to Enhance CDT. Angew Chem Int Ed Engl 2021. [PMID: 34811855 DOI: 10.1002/anie.202114373] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
378 Jiang H, Lin Q, Yu Z, Wang C, Zhang R. Nanotechnologies for Reactive Oxygen Species"Turn-On" Detection. Front Bioeng Biotechnol 2021;9:780032. [PMID: 34805126 DOI: 10.3389/fbioe.2021.780032] [Reference Citation Analysis]
379 Li F, Lv Z, Zhang X, Dong Y, Ding X, Li Z, Li S, Yao C, Yang D. Supramolecular Self‐Assembled DNA Nanosystem for Synergistic Chemical and Gene Regulations on Cancer Cells. Angewandte Chemie 2021;133:25761-25770. [DOI: 10.1002/ange.202111900] [Reference Citation Analysis]
380 Li F, Lv Z, Zhang X, Dong Y, Ding X, Li Z, Li S, Yao C, Yang D. Supramolecular Self-Assembled DNA Nanosystem for Synergistic Chemical and Gene Regulations on Cancer Cells. Angew Chem Int Ed Engl 2021;60:25557-66. [PMID: 34533880 DOI: 10.1002/anie.202111900] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
381 Liu J, Ma L, Zhang G, Chen Y, Wang Z. Recent Progress of Surface Modified Nanomaterials for Scavenging Reactive Oxygen Species in Organism. Bioconjug Chem 2021;32:2269-89. [PMID: 34669378 DOI: 10.1021/acs.bioconjchem.1c00402] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
382 Huang R, Hu J, Qian W, Chen L, Zhang D. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma 2021;9:tkab026. [PMID: 34778468 DOI: 10.1093/burnst/tkab026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
383 Hu X, Zhao P, Lu Y, Liu Y. ROS-Based Nanoparticles for Atherosclerosis Treatment. Materials (Basel) 2021;14:6921. [PMID: 34832328 DOI: 10.3390/ma14226921] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
384 Zhou X, Huang JQ, Liu LS, Deng FA, Liu YB, Li YM, Chen AL, Yu XY, Li SY, Cheng H. Self-Remedied Nanomedicine for Surmounting the Achilles' Heel of Photodynamic Tumor Therapy. ACS Appl Bio Mater 2021;4:8023-32. [PMID: 35006783 DOI: 10.1021/acsabm.1c00938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
385 Qin S, Xue J, Jia E, Ren N, Dong Y, Zhou C. Achieving NIR Light-Mediated Tumor-Specific Fenton Reaction-Assisted Oncotherapy by Using Magnetic Nanoclusters. Front Oncol 2021;11:777295. [PMID: 34760710 DOI: 10.3389/fonc.2021.777295] [Reference Citation Analysis]
386 Li Y, Yu H, Ren J, Lu G, Cao Y, Xu Z, Kang Y, Xue P. Acidic TME-Responsive Nano-Bi2 Se3 @MnCaP as a NIR-II-Triggered Free Radical Generator for Hypoxia-Irrelevant Phototherapy with High Specificity and Immunogenicity. Small 2021;:e2104302. [PMID: 34761867 DOI: 10.1002/smll.202104302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
387 Wang B, Liu P, Huang H, Wang X, Zhang M, Huang J, Lu F, Chen J, Liu Y, Kang Z. Carbon dots up-regulate heme oxygenase-1 expression towards acute lung injury therapy. J Mater Chem B 2021;9:9005-11. [PMID: 34617947 DOI: 10.1039/d1tb01283e] [Reference Citation Analysis]
388 Guan Q, Zhou LL, Dong YB. Ferroptosis in cancer therapeutics: a materials chemistry perspective. J Mater Chem B 2021;9:8906-36. [PMID: 34505861 DOI: 10.1039/d1tb01654g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
389 Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021;121:13454-619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Cited by in Crossref: 141] [Cited by in F6Publishing: 95] [Article Influence: 141.0] [Reference Citation Analysis]
390 Gao N, Jing J, Zhao H, Liu Y, Yang C, Gao M, Chen B, Zhang R, Zhang X. Defective Ag-In-S/ZnS quantum dots: an oxygen-derived free radical scavenger for mitigating macrophage inflammation. J Mater Chem B 2021;9:8971-9. [PMID: 34643636 DOI: 10.1039/d1tb01681d] [Reference Citation Analysis]
391 Li Q, Liu Y, Dai X, Jiang W, Zhao H. Nanozymes Regulate Redox Homeostasis in ROS-Related Inflammation. Front Chem 2021;9:740607. [PMID: 34746091 DOI: 10.3389/fchem.2021.740607] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
392 Gou J, Zhao L, Li Y, Zhang J. Nitrogen-Doped Ti 2 C MXene Quantum Dots as Antioxidants. ACS Appl Nano Mater 2021;4:12308-15. [DOI: 10.1021/acsanm.1c02783] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
393 Zhang L, Chen F, Ren G, Wang Z. Hydrogen peroxide electrochemical sensor based on gold nanoparticles modified with nitrogen-doped and nanoperforated graphene nanozymes. Funct Mater Lett 2022;15:2250004. [DOI: 10.1142/s1793604722500047] [Reference Citation Analysis]
394 Zhao H, Xu X, Zhou L, Hu Y, Huang Y, Narita A. Water-Soluble Nanoparticles with Twisted Double [7]Carbohelicene for Lysosome-Targeted Cancer Photodynamic Therapy. Small 2021;:e2105365. [PMID: 34741415 DOI: 10.1002/smll.202105365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
395 Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small 2021;:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 35.0] [Reference Citation Analysis]
396 Xie C, Cen D, Wang H, Wang Y, Wu Y, Han G, Li X. Hierarchical nanoclusters with programmed disassembly for mitochondria-targeted tumor therapy with MR imaging. Biomater Sci 2021. [PMID: 34726680 DOI: 10.1039/d1bm01423d] [Reference Citation Analysis]
397 Chu H, Shen J, Wang C, Wei Y. Biodegradable iron-doped ZIF-8 based nanotherapeutic system with synergistic chemodynamic/photothermal/chemo-therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;628:127388. [DOI: 10.1016/j.colsurfa.2021.127388] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
398 Wan D, Li S, Zhang J, Ma G, Pan J. Intelligent self-assembly prodrug micelles loading doxorubicin in response to tumor microenvironment for targeted tumors therapy. Chinese Journal of Chemical Engineering 2021;39:219-27. [DOI: 10.1016/j.cjche.2021.06.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
399 Sharath Kumar KS, Girish YR, Ashrafizadeh M, Mirzaei S, Rakesh KP, Hossein Gholami M, Zabolian A, Hushmandi K, Orive G, Kadumudi FB, Dolatshahi-pirouz A, Thakur VK, Zarrabi A, Makvandi P, Rangappa KS. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coordination Chemistry Reviews 2021;447:214135. [DOI: 10.1016/j.ccr.2021.214135] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 22.0] [Reference Citation Analysis]
400 Guo Y, Xu Y, Bao Q, Shen C, Ni D, Hu P, Shi J. Endogenous Copper for Nanocatalytic Oxidative Damage and Self-Protection Pathway Breakage of Cancer. ACS Nano 2021;15:16286-97. [PMID: 34652919 DOI: 10.1021/acsnano.1c05451] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
401 Liu H, Qiao Z, Jang YO, Kim MG, Zou Q, Lee HJ, Koo B, Kim SH, Yun K, Kim HS, Shin Y. Diatomaceous earth/zinc oxide micro-composite assisted antibiotics in fungal therapy. Nano Converg 2021;8:32. [PMID: 34694514 DOI: 10.1186/s40580-021-00283-6] [Reference Citation Analysis]
402 Wang Y, Ye Z, Song G, Liu Z. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. Chem Res Chin Univ . [DOI: 10.1007/s40242-021-1315-z] [Reference Citation Analysis]
403 Peng C, Sun W, Zhou C, Qiang S, Jiang M, Lam JWY, Zhao Z, Kwok RTK, Cai W, Tang BZ. Vision redemption: Self-reporting AIEgens for combined treatment of bacterial keratitis. Biomaterials 2021;279:121227. [PMID: 34736151 DOI: 10.1016/j.biomaterials.2021.121227] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
404 Cao YM, Zheng M, Li YF, Zhai WY, Yuan GT, Zheng M, Zhuo MP, Wang ZS, Liao LS. Smart Textiles Based on MoS2 Hollow Nanospheres for Personal Thermal Management. ACS Appl Mater Interfaces 2021;13:48988-96. [PMID: 34623128 DOI: 10.1021/acsami.1c13269] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
405 Cao S, Wu H, Pijpers IAB, Shao J, Abdelmohsen LKEA, Williams DS, van Hest JCM. Cucurbit-Like Polymersomes with Aggregation-Induced Emission Properties Show Enzyme-Mediated Motility. ACS Nano 2021. [PMID: 34668368 DOI: 10.1021/acsnano.1c07343] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
406 Chen Y, Cai Y, Yu X, Xiao H, He H, Xiao Z, Wang Y, Shuai X. A photo and tumor microenvironment activated nano-enzyme with enhanced ROS generation and hypoxia relief for efficient cancer therapy. J Mater Chem B 2021;9:8253-62. [PMID: 34515282 DOI: 10.1039/d1tb01437d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
407 Zhou X, Zeng W, Rong S, Lv H, Chen Y, Mao Y, Tan W, Li H. Alendronate-Modified Nanoceria with Multiantioxidant Enzyme-Mimetic Activity for Reactive Oxygen Species/Reactive Nitrogen Species Scavenging from Cigarette Smoke. ACS Appl Mater Interfaces 2021;13:47394-406. [PMID: 34605626 DOI: 10.1021/acsami.1c15358] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
408 Gajski G, Gerić M, Jakaša I, Peremin I, Domijan AM, Vučić Lovrenčić M, Kežić S, Bituh M, Moraes de Andrade V. Inflammatory, oxidative and DNA damage status in vegetarians: is the future of human diet green? Crit Rev Food Sci Nutr 2021;:1-33. [PMID: 34634971 DOI: 10.1080/10408398.2021.1986464] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
409 Lbadaoui-darvas M, Garberoglio G, Karadima KS, Cordeiro MNDS, Nenes A, Takahama S. Molecular simulations of interfacial systems: challenges, applications and future perspectives. Molecular Simulation. [DOI: 10.1080/08927022.2021.1980215] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
410 Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 40.0] [Reference Citation Analysis]
411 Nikeafshar S, Khazaei A, Tahvilian R. Inhibition of Methamphetamine-Induced Cytotoxicity in the U87-Cell Line by Atorvastatin-Conjugated Carbon Nanotubes. Appl Biochem Biotechnol 2021. [PMID: 34611858 DOI: 10.1007/s12010-021-03667-w] [Reference Citation Analysis]
412 Carofiglio M, Laurenti M, Genchi GG, Ciofani G, Grochowicz M, Cauda V. Ultrasound Triggered ZnO‐Based Devices for Tunable and Multifaceted Biomedical Applications. Adv Mater Interfaces 2021;8:2101021. [DOI: 10.1002/admi.202101021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
413 Wang X, Wang Y, Li J, Tian T, Li J, Guo Z, Zhang Y. T Cell‐Signaling‐Responsive Conjugate of Antibody with siRNA to Overcome Acquired Resistance to anti‐PD‐1 Immunotherapy. Advanced Therapeutics 2022;5:2100161. [DOI: 10.1002/adtp.202100161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
414 Li S, Song F, Sun C, Hu J, Zhang Y. Amphiphilic methoxy poly(ethylene glycol)-b-poly(carbonate-selenide) with enhanced ROS responsiveness: Facile synthesis and oxidation process. European Polymer Journal 2021;159:110752. [DOI: 10.1016/j.eurpolymj.2021.110752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
415 Dai J, Chen J, Song J, Ji Y, Qiu Y, Hong Z, Song H, Yang L, Zhu Y, Li L, Yang H, Hu Z. Photodynamic therapy: When van der Waals heterojunction meets tumor. Chemical Engineering Journal 2021;421:129773. [DOI: 10.1016/j.cej.2021.129773] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
416 Chen F, An P, Liu L, Gao Z, Li Y, Zhang Y, Sun B, Zhou J. A polydopamine-gated biodegradable cascade nanoreactor for pH-triggered and photothermal-enhanced tumor-specific nanocatalytic therapy. Nanoscale 2021;13:15677-88. [PMID: 34523626 DOI: 10.1039/d1nr03496k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
417 Dai G, Chu JCH, Chan CKW, Choi CHJ, Ng DKP. Reactive oxygen species-responsive polydopamine nanoparticles for targeted and synergistic chemo and photodynamic anticancer therapy. Nanoscale 2021;13:15899-915. [PMID: 34522935 DOI: 10.1039/d1nr04278e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
418 Liu P, Peng Y, Ding J, Zhou W. Fenton Metal Nanomedicines for Imaging-guided Combinatorial Chemodynamic Therapy against Cancer. Asian Journal of Pharmaceutical Sciences 2021. [DOI: 10.1016/j.ajps.2021.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
419 Wang Y, Li Y, Zhang Z, Wang L, Wang D, Tang BZ. Triple-Jump Photodynamic Theranostics: MnO2 Combined Upconversion Nanoplatforms Involving a Type-I Photosensitizer with Aggregation-Induced Emission Characteristics for Potent Cancer Treatment. Adv Mater 2021;33:e2103748. [PMID: 34423484 DOI: 10.1002/adma.202103748] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 26.0] [Reference Citation Analysis]
420 Yang N, Cao C, Li H, Hong Y, Cai Y, Song X, Wang W, Mou X, Dong X. Polymer‐Based Therapeutic Nanoagents for Photothermal‐Enhanced Combination Cancer Therapy. Small Structures 2021;2:2100110. [DOI: 10.1002/sstr.202100110] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
421 Chen J, Wang Y, Niu H, Wang Y, Wu A, Shu C, Zhu Y, Bian Y, Lin K. Metal-Organic Framework-Based Nanoagents for Effective Tumor Therapy by Dual Dynamics-Amplified Oxidative Stress. ACS Appl Mater Interfaces 2021;13:45201-13. [PMID: 34525803 DOI: 10.1021/acsami.1c11032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
422 Mayorga‐burrezo P, Mayorga‐martinez CC, Pumera M. Light‐Driven Micromotors to Dissociate Protein Aggregates That Cause Neurodegenerative Diseases. Adv Funct Materials 2022;32:2106699. [DOI: 10.1002/adfm.202106699] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
423 Jin X, Yu H, Zhang Z, Cui T, Wu Q, Liu X, Gao J, Zhao X, Shi J, Qu G, Jiang G. Surface charge-dependent mitochondrial response to similar intracellular nanoparticle contents at sublethal dosages. Part Fibre Toxicol 2021;18:36. [PMID: 34565395 DOI: 10.1186/s12989-021-00429-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
424 Du C, Zhou L, Qian J, He M, Zhang ZG, Feng C, Zhang Y, Zhang R, Dong CM. Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. ACS Appl Mater Interfaces 2021;13:44002-12. [PMID: 34494817 DOI: 10.1021/acsami.1c11381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
425 Xu L, Xu R, Saw PE, Wu J, Cheng SX, Xu X. Nanoparticle-Mediated Inhibition of Mitochondrial Glutaminolysis to Amplify Oxidative Stress for Combination Cancer Therapy. Nano Lett 2021;21:7569-78. [PMID: 34472343 DOI: 10.1021/acs.nanolett.1c02073] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 15.0] [Reference Citation Analysis]
426 Sun Q, Liu B, Zhao R, Feng L, Wang Z, Dong S, Dong Y, Gai S, Ding H, Yang P. Calcium Peroxide-Based Nanosystem with Cancer Microenvironment-Activated Capabilities for Imaging Guided Combination Therapy via Mitochondrial Ca2+ Overload and Chemotherapy. ACS Appl Mater Interfaces 2021;13:44096-107. [PMID: 34499466 DOI: 10.1021/acsami.1c13304] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
427 Tong T, Guan Y, Gao Y, Xing C, Zhang S, Jiang D, Yang X, Kang Y, Pang J. Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Res 2022;15:2157-76. [DOI: 10.1007/s12274-021-3753-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
428 Xu X, Zeng Z, Ding X, Shan T, Liu Q, Chen M, Chen J, Xia M, He Y, Huang Z, Huang Y, Zhao C. Reactive oxygen species-activatable self-amplifying Watson-Crick base pairing-inspired supramolecular nanoprodrug for tumor-specific therapy. Biomaterials 2021;277:121128. [PMID: 34537502 DOI: 10.1016/j.biomaterials.2021.121128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
429 Liu S, Yan T, Sun J, Li F, Xu J, Sun H, Yu S, Liu J. Biomimetic Cascade Polymer Nanoreactors for Starvation and Photodynamic Cancer Therapy. Molecules 2021;26:5609. [PMID: 34577080 DOI: 10.3390/molecules26185609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
430 Ortega GA, Del Sol-Fernández S, Portilla Y, Cedeño E, Reguera E, Srinivasan S, Barber DF, Marin E, Rajabzadeh AR. Rodlike Particles of Polydopamine-CdTe Quantum Dots: An Actuator As a Photothermal Agent and Reactive Oxygen Species-Generating Nanoplatform for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:42357-69. [PMID: 34472848 DOI: 10.1021/acsami.1c08676] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
431 León-mejía G, Miranda Guevara A, Fiorillo Moreno O, Uribe Cruz C. Cytotoxicity as a Fundamental Response to Xenobiotics. Cytotoxicity - New Insights into Toxic Assessment 2021. [DOI: 10.5772/intechopen.96239] [Reference Citation Analysis]
432 Wang L, Zhang N, Li Y, Kong W, Gou J, Zhang Y, Wang LN, Yu G, Zhang P, Cheng H, Qu L. Mechanism of Nitrogen-Doped Ti3C2 Quantum Dots for Free-Radical Scavenging and the Ultrasensitive H2O2 Detection Performance. ACS Appl Mater Interfaces 2021;13:42442-50. [PMID: 34473485 DOI: 10.1021/acsami.1c11242] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
433 Wang X, Niu X, Sha W, Feng X, Yu L, Zhang Z, Wang W, Yuan Z. An oxidation responsive nano-radiosensitizer increases radiotherapy efficacy by remolding tumor vasculature. Biomater Sci 2021;9:6308-24. [PMID: 34519724 DOI: 10.1039/d1bm00834j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
434 Yuan X, Wang L, Hu M, Zhang L, Chen H, Zhang D, Wang Z, Li T, Zhong M, Xu L, Wang D, Liu Y, Tan W. Oxygen Vacancy‐Driven Reversible Free Radical Catalysis for Environment‐Adaptive Cancer Chemodynamic Therapy. Angewandte Chemie 2021;133:21111-21119. [DOI: 10.1002/ange.202107556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
435 Yan Y, Hou Y, Zhang H, Gao W, Han R, Yu J, Xu L, Tang K. CeO2 QDs anchored on MnO2 nanoflowers with multiple synergistic effects for amplified tumour therapy. Colloids Surf B Biointerfaces 2021;208:112103. [PMID: 34509084 DOI: 10.1016/j.colsurfb.2021.112103] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
436 Sun Y, Jiang X, Liu Y, Liu D, Chen C, Lu C, Zhuang S, Kumar A, Liu J. Recent advances in Cu(II)/Cu(I)-MOFs based nano-platforms for developing new nano-medicines. J Inorg Biochem 2021;225:111599. [PMID: 34507123 DOI: 10.1016/j.jinorgbio.2021.111599] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
437 Shen J, Yu H, Shu Y, Ma M, Chen H. A Robust ROS Generation Strategy for Enhanced Chemodynamic/Photodynamic Therapy via H 2 O 2 /O 2 Self‐Supply and Ca 2+ Overloading. Adv Funct Mater 2021;31:2106106. [DOI: 10.1002/adfm.202106106] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
438 Tan X, Ding W, Jiang Z, Sun L, Huang Y. Reinventing MoS2 Co-catalytic Fenton reaction: Oxygen-incorporation mediating surface superoxide radical generation. Nano Res . [DOI: 10.1007/s12274-021-3848-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
439 Du F, Liu L, Li L, Huang J, Wang L, Tang Y, Ke B, Song L, Cheng C, Ma L, Qiu L. Conjugated Coordination Porphyrin-based Nanozymes for Photo-/Sono-Augmented Biocatalytic and Homologous Tumor Treatments. ACS Appl Mater Interfaces 2021;13:41485-97. [PMID: 34455796 DOI: 10.1021/acsami.1c14024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
440 Zhang X, Li G, Chen G, Wu D, Wu Y, James TD. Enzyme Mimics for Engineered Biomimetic Cascade Nanoreactors: Mechanism, Applications, and Prospects. Adv Funct Mater 2021;31:2106139. [DOI: 10.1002/adfm.202106139] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 25.0] [Reference Citation Analysis]
441 Li XY, Deng FA, Zheng RR, Liu LS, Liu YB, Kong RJ, Chen AL, Yu XY, Li SY, Cheng H. Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy. Small 2021;17:e2102470. [PMID: 34480417 DOI: 10.1002/smll.202102470] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
442 Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2022;7:47-72. [PMID: 34466716 DOI: 10.1016/j.bioactmat.2021.06.006] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 60.0] [Reference Citation Analysis]
443 Deng Z, Li M, Hu Y, He Y, Tao B, Yuan Z, Wang R, Chen M, Luo Z, Cai K. Injectable biomimetic hydrogels encapsulating Gold/metal–organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chemical Engineering Journal 2021;420:129668. [DOI: 10.1016/j.cej.2021.129668] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
444 Chen Y, Xiang H, Zhuang S, Shen Y, Chen Y, Zhang J. Oxygen-Independent Photocleavage of Radical Nanogenerator for Near-IR-Gated and H2 O-Mediated Free-Radical Nanotherapy. Adv Mater 2021;33:e2100129. [PMID: 34302402 DOI: 10.1002/adma.202100129] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
445 Chen T, Yin S, Wu J. Nanomaterials meet microfluidics: Improved analytical methods and high-throughput synthetic approaches. TrAC Trends in Analytical Chemistry 2021;142:116309. [DOI: 10.1016/j.trac.2021.116309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
446 Gomes ATPC, Neves MGPMS, Fernandes R, Ribeiro CF, Cavaleiro JAS, Moura NMM. Unraveling the Photodynamic Activity of Cationic Benzoporphyrin-Based Photosensitizers against Bladder Cancer Cells. Molecules 2021;26:5312. [PMID: 34500746 DOI: 10.3390/molecules26175312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
447 Cai SS, Li T, Akinade T, Zhu Y, Leong KW. Drug delivery carriers with therapeutic functions. Adv Drug Deliv Rev 2021;176:113884. [PMID: 34302897 DOI: 10.1016/j.addr.2021.113884] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
448 Fan W, Zhang S, Wu Y, Lu T, Liu J, Cao X, Liu S, Yan L, Shi X, Liu G, Huang C, Song S. Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS Appl Mater Interfaces 2021;13:40249-66. [PMID: 34424682 DOI: 10.1021/acsami.1c09215] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
449 Ma K, Qi G, Wang B, Yu T, Zhang Y, Li H, Kitte SA, Jin Y. Ultrasound-activated Au/ZnO-based Trojan nanogenerators for combined targeted electro-stimulation and enhanced catalytic therapy of tumor. Nano Energy 2021;87:106208. [DOI: 10.1016/j.nanoen.2021.106208] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
450 Shi X, Yang J, Wen X, Tian F, Li C. Oxygen vacancy enhanced biomimetic superoxide dismutase activity of CeO2-Gd nanozymes. Journal of Rare Earths 2021;39:1108-16. [DOI: 10.1016/j.jre.2020.06.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
451 Huang X, He D, Pan Z, Luo G, Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio 2021;11:100124. [PMID: 34458716 DOI: 10.1016/j.mtbio.2021.100124] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
452 Xiang H, You C, Liu W, Wang D, Chen Y, Dong C. Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials 2021;277:121071. [PMID: 34450576 DOI: 10.1016/j.biomaterials.2021.121071] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
453 Xu J, Solban N, Wang Y, Ferguson H, Perera S, Lin K, Cai M, Paul M, Schutt EG, Larsen CT, Li R, Saklatvala R, Long BJ, Ranganath S, Procopio AT, Mittal S, Templeton AC. Sonoporation‐Enhanced Delivery of STING Agonist Induced Robust Immune Modulation and Tumor Regression. Adv Therap 2021;4:2100154. [DOI: 10.1002/adtp.202100154] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
454 Yuan X, Wang L, Hu M, Zhang L, Chen H, Zhang D, Wang Z, Li T, Zhong M, Xu L, Wang D, Liu Y, Tan W. Oxygen Vacancy-Driven Reversible Free Radical Catalysis for Environment-Adaptive Cancer Chemodynamic Therapy. Angew Chem Int Ed Engl 2021;60:20943-51. [PMID: 34137148 DOI: 10.1002/anie.202107556] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
455 Zeng X, Chen B, Song Y, Lin X, Zhou SF, Zhan G. Fabrication of Versatile Hollow Metal-Organic Framework Nanoplatforms for Folate-Targeted and Combined Cancer Imaging and Therapy. ACS Appl Bio Mater 2021;4:6417-29. [PMID: 35006919 DOI: 10.1021/acsabm.1c00603] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
456 Kou E, Li W, Zhang H, Yang X, Kang Y, Zheng M, Qu S, Lei B. Nitrogen and Sulfur Co-doped Carbon Dots Enhance Drought Resistance in Tomato and Mung Beans. ACS Appl Bio Mater 2021;4:6093-102. [PMID: 35006883 DOI: 10.1021/acsabm.1c00427] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
457 Li J, Wei X, Hu Y, Gao Y, Zhang Y, Zhang X. A fluorescent nanobiocide based on ROS generation for eliminating pathogenic and multidrug-resistant bacteria. J Mater Chem B 2021;9:3689-95. [PMID: 33861292 DOI: 10.1039/d1tb00273b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
458 Peng R, Luo Y, Yao C, Cui Q, Wu Q, Li L. Intramolecular Charge Transfer-Based Conjugated Oligomer with Fluorescence, Efficient Photodynamics, and Photothermal Activities. ACS Appl Bio Mater 2021;4:6565-74. [PMID: 35006900 DOI: 10.1021/acsabm.1c00719] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
459 Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021;50:6013-41. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Cited by in Crossref: 101] [Cited by in F6Publishing: 116] [Article Influence: 101.0] [Reference Citation Analysis]
460 Xu M, Zhou Y, Ren C, Liang X, Li N. Palladium Hydride Nanopocket Cubes and Their H 2 ‐Therapy Function in Amplifying Inhibition of Foam Cells to Attenuate Atherosclerosis. Adv Funct Materials 2021;31:2104892. [DOI: 10.1002/adfm.202104892] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
461 Dai H, Wang X, Shao J, Wang W, Mou X, Dong X. NIR-II Organic Nanotheranostics for Precision Oncotherapy. Small 2021;:e2102646. [PMID: 34382346 DOI: 10.1002/smll.202102646] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
462 Jiang W, Li X, Dong S, Zhou W. Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother 2021;142:111990. [PMID: 34388528 DOI: 10.1016/j.biopha.2021.111990] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
463 Ritacco I, Imparato C, Falivene L, Cavallo L, Magistrato A, Caporaso L, Farnesi Camellone M, Aronne A. Spontaneous Production of Ultrastable Reactive Oxygen Species on Titanium Oxide Surfaces Modified with Organic Ligands. Adv Mater Interfaces 2021;8:2100629. [DOI: 10.1002/admi.202100629] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
464 Chen T, Yao T, Peng H, Whittaker AK, Li Y, Zhu S, Wang Z. An Injectable Hydrogel for Simultaneous Photothermal Therapy and Photodynamic Therapy with Ultrahigh Efficiency Based on Carbon Dots and Modified Cellulose Nanocrystals. Adv Funct Materials 2021;31:2106079. [DOI: 10.1002/adfm.202106079] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
465 Qiao W, Ma T, Wang S, Li L, Liu M, Jiang H, Wu Y, Zhu J, Li Z. Designing Squaraine Dyes with Bright Deep‐Red Aggregation‐Induced Emission for Specific and Ratiometric Fluorescent Detection of Hypochlorite. Adv Funct Materials 2021;31:2105452. [DOI: 10.1002/adfm.202105452] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
466 Kong N, Zhang H, Feng C, Liu C, Xiao Y, Zhang X, Mei L, Kim JS, Tao W, Ji X. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nat Commun 2021;12:4777. [PMID: 34362904 DOI: 10.1038/s41467-021-24961-5] [Cited by in Crossref: 70] [Cited by in F6Publishing: 77] [Article Influence: 70.0] [Reference Citation Analysis]
467 Věžník J, Konhefr M, Fohlerová Z, Lacina K. Redox-dependent cytotoxicity of ferrocene derivatives and ROS-activated prodrugs based on ferrocenyliminoboronates. J Inorg Biochem 2021;224:111561. [PMID: 34385077 DOI: 10.1016/j.jinorgbio.2021.111561] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
468 Ge M, Xu D, Chen Z, Wei C, Zhang Y, Yang C, Chen Y, Lin H, Shi J. Magnetostrictive-Piezoelectric-Triggered Nanocatalytic Tumor Therapy. Nano Lett 2021;21:6764-72. [PMID: 34342999 DOI: 10.1021/acs.nanolett.1c01313] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 23.0] [Reference Citation Analysis]
469 Valenzuela C, Chen C, Sun M, Ye Z, Zhang J. Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. J Mater Chem B 2021;9:3450-83. [PMID: 33909746 DOI: 10.1039/d1tb00041a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
470 Cao S, Xia Y, Shao J, Guo B, Dong Y, Pijpers IAB, Zhong Z, Meng F, Abdelmohsen LKEA, Williams DS, Hest JCM. Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photo‐Dynamic Therapy. Angew Chem 2021;133:17770-8. [DOI: 10.1002/ange.202105103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
471 Wang P, Sun L, Xu M, Sun S, Zhang L, Zhang J, Wang S, Liang X. Titania/iron oxide nanoplatform operates as hydrogen peroxide enriched vector for amplification of fenton catalytic efficiency in cancer theranostics. Chemical Engineering Journal 2021;418:129381. [DOI: 10.1016/j.cej.2021.129381] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
472 Hasan MN, Bera A, Maji TK, Pal SK. Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chimica Acta 2021;523:120381. [DOI: 10.1016/j.ica.2021.120381] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 19.0] [Reference Citation Analysis]
473 Zhao C, Li Z, Chen J, Su L, Wang J, Chen DS, Ye J, Liao N, Yang H, Song J, Shi J. Site-Specific Biomimicry of Antioxidative Melanin Formation and Its Application for Acute Liver Injury Therapy and Imaging. Adv Mater 2021;33:e2102391. [PMID: 34278624 DOI: 10.1002/adma.202102391] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
474 Li D, Dai Q, Chen H, Lin H, Lu Z, Zheng H, Lv P, Li W, Liu G, Chu C. Metal-organic nanostructure based on TixOy/Ruthenium reaction Units: For CT/MR Imaging-Guided X-ray induced dynamic therapy. Chemical Engineering Journal 2021;417:129262. [DOI: 10.1016/j.cej.2021.129262] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
475 Wang X, Zhao H, Liu Z, Wang Y, Lin D, Chen L, Dai J, Lin K, Shen SG. Polydopamine nanoparticles as dual-task platform for osteoarthritis therapy: A scavenger for reactive oxygen species and regulator for cellular powerhouses. Chemical Engineering Journal 2021;417:129284. [DOI: 10.1016/j.cej.2021.129284] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
476 Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y. An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal 2021;418:129431. [DOI: 10.1016/j.cej.2021.129431] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 48.0] [Reference Citation Analysis]
477 Kang Y, Lei L, Zhu C, Zhang H, Mei L, Ji X. Piezo-photocatalytic effect mediating reactive oxygen species burst for cancer catalytic therapy. Mater Horiz 2021;8:2273-85. [PMID: 34846431 DOI: 10.1039/d1mh00492a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
478 Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021;175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
479 Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021;175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
480 Cao Z, Li D, Wang J, Yang X. Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomater 2021;130:17-31. [PMID: 34058390 DOI: 10.1016/j.actbio.2021.05.023] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
481 Liang W, He X, Bi J, Hu T, Sun Y. Role of reactive oxygen species in tumors based on the 'seed and soil' theory: A complex interaction (Review). Oncol Rep 2021;46:208. [PMID: 34328200 DOI: 10.3892/or.2021.8159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
482 Crapanzano R, Secchi V, Villa I. Co-Adjuvant Nanoparticles for Radiotherapy Treatments of Oncological Diseases. Applied Sciences 2021;11:7073. [DOI: 10.3390/app11157073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
483 Guo J, Xu Y, Liu M, Yu J, Yang H, Lei W, Huang C. An MSN-based synergistic nanoplatform for root canal biofilm eradication via Fenton-enhanced sonodynamic therapy. J Mater Chem B 2021. [PMID: 34323245 DOI: 10.1039/d1tb01031j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
484 Chen B, Cao J, Zhang K, Zhang YN, Lu J, Zubair Iqbal M, Zhang Q, Kong X. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. J Biomater Sci Polym Ed 2021;:1-18. [PMID: 34251996 DOI: 10.1080/09205063.2021.1954138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
485 Liu L, Zhou X, Zheng R, Huang J, Kong R, Li Y, Wang C, Chen A, Li S, Cheng H. Self-delivery nanomedicine for chemotherapy sensitized photodynamic therapy. Chem Commun (Camb) 2021;57:7296-9. [PMID: 34223569 DOI: 10.1039/d1cc02318g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
486 Zheng R, Chen X, Zhao L, Yang N, Guan R, Chen A, Yu X, Cheng H, Wang C, Li S. A porphysome-based photodynamic O2 economizer for hypoxic tumor treatment by inhibiting mitochondrial respiration. Chem Commun (Camb) 2021;57:4134-7. [PMID: 33908446 DOI: 10.1039/d1cc00544h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
487 Wang Y, Wang J, Gou K, Kang W, Guo X, Zhu K, Li S, Li H. pH/H2O2 Dual-Responsive Chiral Mesoporous Silica Nanorods Coated with a Biocompatible Active Targeting Ligand for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:35397-409. [PMID: 34313104 DOI: 10.1021/acsami.1c08532] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
488 Liang X, Zhu D, Li Y, Liao L, Yang C, Liu L, Huang R, Wang W, Zhu Z, He L, Wang Y. Molecular characterization and functional analysis of peroxiredoxin 4 in grass carp (Ctenopharyngodon idella). Dev Comp Immunol 2021;125:104213. [PMID: 34324900 DOI: 10.1016/j.dci.2021.104213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
489 Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021;171:105780. [PMID: 34302977 DOI: 10.1016/j.phrs.2021.105780] [Cited by in Crossref: 46] [Cited by in F6Publishing: 30] [Article Influence: 46.0] [Reference Citation Analysis]
490 Milhem Z, Chiroi P, Nutu A, Ilea M, Lupse M, Zanoaga O, Berindan-neagoe I. Non-Coding RNAs and Reactive Oxygen Species–Symmetric Players of the Pathogenesis Associated with Bacterial and Viral Infections. Symmetry 2021;13:1307. [DOI: 10.3390/sym13071307] [Reference Citation Analysis]
491 Debnath K, Pal S, Jana NR. Chemically Designed Nanoscale Materials for Controlling Cellular Processes. Acc Chem Res 2021;54:2916-27. [PMID: 34232016 DOI: 10.1021/acs.accounts.1c00215] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
492 Liu W, Li Z, Qiu Y, Li J, Yang J, Li J. Biomineralization of Aggregation-Induced Emission-Active Photosensitizers for pH-Mediated Tumor Imaging and Photodynamic Therapy. ACS Appl Bio Mater 2021;4:5566-74. [PMID: 35006732 DOI: 10.1021/acsabm.1c00298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
493 Liu Y, Yao M, Han W, Zhang H, Zhang S. Construction of a Single-Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry 2021. [PMID: 34263950 DOI: 10.1002/chem.202102016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
494 Gao C, Guo W, Guo X, Ding Z, Ding Y, Shen XC. Black SnO2-x based nanotheranostic for imaging-guided photodynamic/photothermal synergistic therapy in the second near-infrared window. Acta Biomater 2021;129:220-34. [PMID: 34082106 DOI: 10.1016/j.actbio.2021.05.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
495 Zhao J, Wang H, Geng H, Yang Q, Tong Y, He W. Au/N-Doped Carbon Dot Nanozymes as Light-Controlled Anti- and Pro-Oxidants. ACS Appl Nano Mater 2021;4:7253-63. [DOI: 10.1021/acsanm.1c01215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
496 Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front Chem 2021;9:629054. [PMID: 34327190 DOI: 10.3389/fchem.2021.629054] [Cited by in Crossref: 61] [Cited by in F6Publishing: 69] [Article Influence: 61.0] [Reference Citation Analysis]
497 Liu J, Ye LY, Xiong WH, Liu T, Yang H, Lei J. A cerium oxide@metal-organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chem Commun (Camb) 2021;57:2820-3. [PMID: 33605969 DOI: 10.1039/d1cc00001b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
498 Zhang Y, Zhao C, Zhang H, Liu R, Wang S, Pu Y, Yin L. Integrating transcriptomics and behavior tests reveals how the C. elegans responds to copper induced aging. Ecotoxicol Environ Saf 2021;222:112494. [PMID: 34265532 DOI: 10.1016/j.ecoenv.2021.112494] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
499 Yang B, Shi J. Defect Engineering of Mesoporous Silica Nanoparticles for Biomedical Applications. Acc Mater Res 2021;2:581-93. [DOI: 10.1021/accountsmr.1c00055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
500 Fu X, Yin W, Shi D, Yang Y, He S, Hai J, Hou Z, Fan Z, Zhang D. Shuttle-Shape Carrier-Free Platinum-Coordinated Nanoreactors with O2 Self-Supply and ROS Augment for Enhanced Phototherapy of Hypoxic Tumor. ACS Appl Mater Interfaces 2021;13:32690-702. [PMID: 34229434 DOI: 10.1021/acsami.1c06668] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
501 Zhao P, Deng Y, Xiang G, Liu Y. Nanoparticle-Assisted Sonosensitizers and Their Biomedical Applications. Int J Nanomedicine 2021;16:4615-30. [PMID: 34262272 DOI: 10.2147/IJN.S307885] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
502 Li M, Wen H, Li H, Yan ZC, Li Y, Wang L, Wang D, Tang BZ. AIEgen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection. Biomaterials 2021;276:121007. [PMID: 34237505 DOI: 10.1016/j.biomaterials.2021.121007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
503 Dolai J, Mandal K, Jana NR. Nanoparticle Size Effects in Biomedical Applications. ACS Appl Nano Mater 2021;4:6471-96. [DOI: 10.1021/acsanm.1c00987] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 20.0] [Reference Citation Analysis]
504 Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. Adv Sci (Weinh) 2021;8:2100540. [PMID: 34306980 DOI: 10.1002/advs.202100540] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
505 Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews 2021;439:213945. [DOI: 10.1016/j.ccr.2021.213945] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 33.0] [Reference Citation Analysis]
506 Wang P, Xiao M, Pei H, Xing H, Luo S, Tsung C, Li L. Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy. Chemical Engineering Journal 2021;415:129036. [DOI: 10.1016/j.cej.2021.129036] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 16.0] [Reference Citation Analysis]
507 Yu P, Li X, Cheng G, Zhang X, Wu D, Chang J, Wang S. Hydrogen peroxide-generating nanomedicine for enhanced chemodynamic therapy. Chinese Chemical Letters 2021;32:2127-38. [DOI: 10.1016/j.cclet.2021.02.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
508 Cao S, Xia Y, Shao J, Guo B, Dong Y, Pijpers IAB, Zhong Z, Meng F, Abdelmohsen LKEA, Williams DS, van Hest JCM. Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photo-Dynamic Therapy. Angew Chem Int Ed Engl 2021;60:17629-37. [PMID: 34036695 DOI: 10.1002/anie.202105103] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
509 Wu MY, Gu M, Leung JK, Li X, Yuan Y, Shen C, Wang L, Zhao E, Chen S. A Membrane-Targeting Photosensitizer with Aggregation-Induced Emission Characteristics for Highly Efficient Photodynamic Combat of Human Coronaviruses. Small 2021;17:e2101770. [PMID: 34190409 DOI: 10.1002/smll.202101770] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
510 Geng P, Yu N, Liu X, Wen M, Ren Q, Qiu P, Macharia DK, Zhang H, Li M, Chen Z. GSH-Sensitive Nanoscale Mn3+-Sealed Coordination Particles as Activatable Drug Delivery Systems for Synergistic Photodynamic-Chemo Therapy. ACS Appl Mater Interfaces 2021;13:31440-51. [PMID: 34184531 DOI: 10.1021/acsami.1c06440] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
511 Liu Y, Mo F, Hu J, Jiang Q, Wang X, Zou Z, Zhang XZ, Pang DW, Liu X. Precision photothermal therapy and photoacoustic imaging by in situ activatable thermoplasmonics. Chem Sci 2021;12:10097-105. [PMID: 34349972 DOI: 10.1039/d1sc02203b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
512 Wang X, Li C, Qian J, Lv X, Li H, Zou J, Zhang J, Meng X, Liu H, Qian Y, Lin W, Wang H. NIR-II Responsive Hollow Magnetite Nanoclusters for Targeted Magnetic Resonance Imaging-Guided Photothermal/Chemo-Therapy and Chemodynamic Therapy. Small 2021;17:e2100794. [PMID: 34165871 DOI: 10.1002/smll.202100794] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
513 Shu G, Zhu W, Jiang Y, Li X, Pan J, Zhang X, Zhang X, Sun S. Persistent Luminescence Immune Hydrogel for Photodynamic‐Immunotherapy of Tumors In Vivo. Adv Funct Mater 2021;31:2104472. [DOI: 10.1002/adfm.202104472] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
514 Li J, Qiu H, Gong H, Tong W. Broad-Spectrum Reactive Oxygen Species Scavenging and Activated Macrophage-Targeting Microparticles Ameliorate Inflammatory Bowel Disease. Biomacromolecules 2021;22:3107-18. [PMID: 34160209 DOI: 10.1021/acs.biomac.1c00551] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
515 Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021;50:8669-742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Cited by in Crossref: 92] [Cited by in F6Publishing: 111] [Article Influence: 92.0] [Reference Citation Analysis]
516 Tu Y, Zhou Y, Zhang D, Yang J, Li X, Ji K, Wu X, Liu R, Zhang Q. Light-Induced Reactive Oxygen Species (ROS) Generator for Tumor Therapy through an ROS Burst in Mitochondria and AKT-Inactivation-Induced Apoptosis. ACS Appl Bio Mater 2021;4:5222-30. [PMID: 35007004 DOI: 10.1021/acsabm.1c00386] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
517 Wu Q, Peng R, Luo Y, Cui Q, Zhu S, Li L. Antibacterial Activity of Porous Gold Nanocomposites via NIR Light-Triggered Photothermal and Photodynamic Effects. ACS Appl Bio Mater 2021;4:5071-9. [PMID: 35007055 DOI: 10.1021/acsabm.1c00318] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
518 Zhou X, Yan F, Shen B, Zhai J, Hedin N. Enhanced Sunlight-Driven Reactive Species Generation via Polarization Field in Nanopiezoelectric Heterostructures. ACS Appl Mater Interfaces 2021;13:29691-707. [PMID: 34152123 DOI: 10.1021/acsami.1c06912] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
519 Kang RH, Kim Y, Kim JH, Kim NH, Ko HM, Lee SH, Shim I, Kim JS, Jang HJ, Kim D. Self-Activating Therapeutic Nanoparticle: A Targeted Tumor Therapy Using Reactive Oxygen Species Self-Generation and Switch-on Drug Release. ACS Appl Mater Interfaces 2021;13:30359-72. [PMID: 34142813 DOI: 10.1021/acsami.1c07037] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
520 Zhou Y, Yu M, Tie C, Deng Y, Wang J, Yi Y, Zhang F, Huang C, Zheng H, Mei L, Wu M. Tumor Microenvironment-Specific Chemical Internalization for Enhanced Gene Therapy of Metastatic Breast Cancer. Research 2021;2021:1-15. [DOI: 10.34133/2021/9760398] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
521 Mezghrani B, Ali LMA, Richeter S, Durand JO, Hesemann P, Bettache N. Periodic Mesoporous Ionosilica Nanoparticles for Green Light Photodynamic Therapy and Photochemical Internalization of siRNA. ACS Appl Mater Interfaces 2021;13:29325-39. [PMID: 34138540 DOI: 10.1021/acsami.1c05848] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
522 Tseng TH, Chen CY, Wu WC, Chen CY. Targeted and oxygen-enriched polymeric micelles for enhancing photodynamic therapy. Nanotechnology 2021;32. [PMID: 34137736 DOI: 10.1088/1361-6528/ac020d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
523 Chen L, Huang Q, Zhao T, Sui L, Wang S, Xiao Z, Nan Y, Ai K. Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19. Redox Biol 2021;45:102046. [PMID: 34174559 DOI: 10.1016/j.redox.2021.102046] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 29.0] [Reference Citation Analysis]
524 Li Y, Chen H, Liao J, Chen K, Javed MT, Qiao N, Zeng Q, Liu B, Yi J, Tang Z, Li Y. Long-term copper exposure promotes apoptosis and autophagy by inducing oxidative stress in pig testis. Environ Sci Pollut Res Int 2021. [PMID: 34128171 DOI: 10.1007/s11356-021-14853-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
525 Hussain M, Suo H, Xie Y, Wang K, Wang H, Hou Z, Gao Y, Zhang L, Tao J, Jiang H, Zhu J. Dopamine-Substituted Multidomain Peptide Hydrogel with Inherent Antimicrobial Activity and Antioxidant Capability for Infected Wound Healing. ACS Appl Mater Interfaces 2021;13:29380-91. [PMID: 34128656 DOI: 10.1021/acsami.1c07656] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 19.0] [Reference Citation Analysis]
526 Luan X, Pan Y, Gao Y, Song Y. Recent near-infrared light-activated nanomedicine toward precision cancer therapy. J Mater Chem B 2021. [PMID: 34124735 DOI: 10.1039/d1tb00671a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
527 Li Y, Wei X, Tao F, Deng C, Lv C, Chen C, Cheng Y. The potential application of nanomaterials for ferroptosis-based cancer therapy. Biomed Mater 2021;16. [PMID: 34038885 DOI: 10.1088/1748-605X/ac058a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
528 He Y, Guo S, Zhang Y, Liu Y, Ju H. NIR-II reinforced intracellular cyclic reaction to enhance chemodynamic therapy with abundant H2O2 supply. Biomaterials 2021;275:120962. [PMID: 34153782 DOI: 10.1016/j.biomaterials.2021.120962] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
529 Zhu Y, Tang Y, Ruan Z, Dai Y, Li Z, Lin Z, Zhao S, Cheng L, Sun B, Zeng M, Zhu J, Zhao R, Lu B, Long H. Mg(OH)2 nanoparticles enhance the antibacterial activities of macrophages by activating the reactive oxygen species. J Biomed Mater Res A 2021. [PMID: 34110087 DOI: 10.1002/jbm.a.37219] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
530 Yang C, Chang M, Yuan M, Jiang F, Ding B, Zhao Y, Dang P, Cheng Z, Kheraif AAA, Ma P, Lin J. NIR-Triggered Multi-Mode Antitumor Therapy Based on Bi2 Se3 /Au Heterostructure with Enhanced Efficacy. Small 2021;17:e2100961. [PMID: 34110686 DOI: 10.1002/smll.202100961] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
531 Wang Y, Xu Y, Dong S, Wang P, Chen W, Lu Z, Ye D, Pan B, Wu D, Vecitis CD, Gao G. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat Commun 2021;12:3508. [PMID: 34108484 DOI: 10.1038/s41467-021-23921-3] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 45.0] [Reference Citation Analysis]
532 Men Y, Brevé TG, Liu H, Denkova AG, Eelkema R. Photo cleavable thioacetal block copolymers for controlled release. Polym Chem 2021;12:3612-8. [PMID: 34262625 DOI: 10.1039/d1py00514f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
533 Liu Y, Qing Y, Jing L, Zou W, Guo R. Platinum-Copper Bimetallic Colloid Nanoparticle Cluster Nanozymes with Multiple Enzyme-like Activities for Scavenging Reactive Oxygen Species. Langmuir 2021;37:7364-72. [PMID: 34097414 DOI: 10.1021/acs.langmuir.1c00697] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
534 Yang B, Yao H, Tian H, Yu Z, Guo Y, Wang Y, Yang J, Chen C, Shi J. Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination. Nat Commun 2021;12:3393. [PMID: 34099712 DOI: 10.1038/s41467-021-23710-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
535 Chen H, Yan Z, Wu S, Li F. A glutathione-responsive polyphenol - Constructed nanodevice for double roles in apoptosis and ferroptosis. Colloids Surf B Biointerfaces 2021;205:111902. [PMID: 34107442 DOI: 10.1016/j.colsurfb.2021.111902] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
536 Dumas A, Knaus UG. Raising the ‘Good’ Oxidants for Immune Protection. Front Immunol 2021;12:698042. [DOI: 10.3389/fimmu.2021.698042] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
537 Zhang Y, Ni S, Chong C, Xu J, Mu X, Zhang X. Biocatalysts at atom level: From coordination structure to medical applications. Applied Materials Today 2021;23:101029. [DOI: 10.1016/j.apmt.2021.101029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
538 Özdemir Z, Yang M, Kim G, Bildziukevich U, Šaman D, Li X, Yoon J, Wimmer Z. Redox-responsive nanoparticles self-assembled from porphyrin-betulinic acid conjugates for chemo- and photodynamic therapy. Dyes and Pigments 2021;190:109307. [DOI: 10.1016/j.dyepig.2021.109307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
539 Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. Adv Mater 2021;33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
540 Yuan P, Deng FA, Liu YB, Zheng RR, Rao XN, Qiu XZ, Zhang DW, Yu XY, Cheng H, Li SY. Mitochondria Targeted O2 Economizer to Alleviate Tumor Hypoxia for Enhanced Photodynamic Therapy. Adv Healthc Mater 2021;10:e2100198. [PMID: 33938637 DOI: 10.1002/adhm.202100198] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
541 Tang Y, Wang G. NIR light-responsive nanocarriers for controlled release. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2021;47:100420. [DOI: 10.1016/j.jphotochemrev.2021.100420] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
542 Wang Q, Ma M, Cui K, Li X, Zhou Y, Li Y, Wu X. Mechanochemical synthesis of MAPbBr3/carbon sphere composites for boosting carrier-involved superoxide species. Journal of Environmental Sciences 2021;104:399-414. [DOI: 10.1016/j.jes.2020.12.024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
543 Adhikari A, Mondal S, Das M, Ghosh R, Biswas P, Darbar S, Singh S, Das AK, Bhattacharya SS, Pal D, Mallick AK, Pal SK. Redox Buffering Capacity of Nanomaterials as an Index of ROS-Based Therapeutics and Toxicity: A Preclinical Animal Study. ACS Biomater Sci Eng 2021;7:2475-84. [PMID: 34060316 DOI: 10.1021/acsbiomaterials.1c00402] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
544 Song N, Zhou Z, Song Y, Li M, Yu X, Hu B, Yu Z. In situ oxidation-regulated self-assembly of peptides into transformable scaffolds for cascade therapy. Nano Today 2021;38:101198. [DOI: 10.1016/j.nantod.2021.101198] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
545 Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coordination Chemistry Reviews 2021;437:213828. [DOI: 10.1016/j.ccr.2021.213828] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 31.0] [Reference Citation Analysis]
546 Wang Y, Xu S, Shi L, Teh C, Qi G, Liu B. Cancer‐Cell‐Activated in situ Synthesis of Mitochondria‐Targeting AIE Photosensitizer for Precise Photodynamic Therapy. Angew Chem 2021;133:15072-80. [DOI: 10.1002/ange.202017350] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
547 Wang Y, Xu S, Shi L, Teh C, Qi G, Liu B. Cancer-Cell-Activated in situ Synthesis of Mitochondria-Targeting AIE Photosensitizer for Precise Photodynamic Therapy. Angew Chem Int Ed Engl 2021;60:14945-53. [PMID: 33887096 DOI: 10.1002/anie.202017350] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 44.0] [Reference Citation Analysis]
548 Zhong Y, Li X, Chen J, Wang X, Wei L, Fang L, Kumar A, Zhuang S, Liu J. Recent advances in MOF-based nanoplatforms generating reactive species for chemodynamic therapy. Dalton Trans 2020;49:11045-58. [PMID: 32756684 DOI: 10.1039/d0dt01882a] [Cited by in Crossref: 91] [Cited by in F6Publishing: 92] [Article Influence: 91.0] [Reference Citation Analysis]
549 Sun Y, Ma X, Hu H. Application of Nano-Drug Delivery System Based on Cascade Technology in Cancer Treatment. Int J Mol Sci 2021;22:5698. [PMID: 34071794 DOI: 10.3390/ijms22115698] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
550 Wang L, Niu C. IR780-based nanomaterials for cancer imaging and therapy. J Mater Chem B 2021;9:4079-97. [PMID: 33912889 DOI: 10.1039/d1tb00407g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
551 Chen D, Xu Q, Wang W, Shao J, Huang W, Dong X. Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small 2021;17:e2006742. [PMID: 34038611 DOI: 10.1002/smll.202006742] [Cited by in Crossref: 54] [Cited by in F6Publishing: 65] [Article Influence: 54.0] [Reference Citation Analysis]
552 Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark‐Hypoxia by Catalytic Microenvironment‐Tailored Nanoreactors for NIR‐II Fluorescence‐Monitored Chemodynamic Therapy. Angew Chem 2021;133:15133-9. [DOI: 10.1002/ange.202102097] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
553 Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark-Hypoxia by Catalytic Microenvironment-Tailored Nanoreactors for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021;60:15006-12. [PMID: 33871140 DOI: 10.1002/anie.202102097] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 35.0] [Reference Citation Analysis]
554 Cheng F, Wang S, Zheng H, Yang S, Zhou L, Liu K, Zhang Q, Zhang H. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. Colloids Surf B Biointerfaces 2021;205:111878. [PMID: 34058693 DOI: 10.1016/j.colsurfb.2021.111878] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
555 Xiao YF, Chen JX, Chen WC, Zheng X, Cao C, Tan J, Cui X, Yuan Z, Ji S, Lu G, Liu W, Wang P, Li S, Lee CS. Achieving high singlet-oxygen generation by applying the heavy-atom effect to thermally activated delayed fluorescent materials. Chem Commun (Camb) 2021;57:4902-5. [PMID: 33870972 DOI: 10.1039/d0cc08323b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
556 Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021;9:3543-75. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
557 Zhu Y, Liu Y, Xie Z, He T, Su L, Guo F, Arkin G, Lai X, Xu J, Zhang H. Magnetic black phosphorus microbubbles for targeted tumor theranostics. Nanophotonics 2021;10:3339-58. [DOI: 10.1515/nanoph-2021-0085] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
558 Zhou C, Wang Z, Li J, Wu X, Fan N, Li D, Liu F, Plum PS, Hoppe S, Hillmer AM, Quaas A, Gebauer F, Chon SH, Bruns CJ, Zhao Y. Aldo-Keto Reductase 1C3 Mediates Chemotherapy Resistance in Esophageal Adenocarcinoma via ROS Detoxification. Cancers (Basel) 2021;13:2403. [PMID: 34065695 DOI: 10.3390/cancers13102403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
559 Chen Q, Ma X, Xie L, Chen W, Xu Z, Song E, Zhu X, Song Y. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. Nanoscale 2021;13:4855-70. [PMID: 33624647 DOI: 10.1039/d0nr08757b] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 34.0] [Reference Citation Analysis]
560 Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, Ma L, Cheng C, Guo Q, Qiu L. Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. Adv Funct Mater 2021;31:2101804. [DOI: 10.1002/adfm.202101804] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
561 Zhou M, Liu X, Chen F, Yang L, Yuan M, Fu DY, Wang W, Yu H. Stimuli-activatable nanomaterials for phototherapy of cancer. Biomed Mater 2021;16. [PMID: 33882463 DOI: 10.1088/1748-605X/abfa6e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
562 Wang L, Hu R, Qin A, Tang BZ. Conjugated Polymers with Aggregation-Induced Emission Characteristics for Fluorescence Imaging and Photodynamic Therapy. ChemMedChem 2021;16:2330-8. [PMID: 33882188 DOI: 10.1002/cmdc.202100138] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
563 Lai HL, Fan XX, Li RZ, Wang YW, Zhang J, Liu L, Neher E, Yao XJ, Leung EL. Roles of Ion Fluxes, Metabolism, and Redox Balance in Cancer Therapy. Antioxid Redox Signal 2021;34:1108-27. [PMID: 33115253 DOI: 10.1089/ars.2020.8125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
564 Ahamad N, Kar A, Mehta S, Dewani M, Ravichandran V, Bhardwaj P, Sharma S, Banerjee R. Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials 2021;274:120875. [PMID: 34010755 DOI: 10.1016/j.biomaterials.2021.120875] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
565 Zhu J, Jin Q, Zhao H, Zhu W, Liu Z, Chen Q. Reactive Oxygen Species Scavenging Sutures for Enhanced Wound Sealing and Repair. Small Structures 2021;2:2100002. [DOI: 10.1002/sstr.202100002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
566 Su T, Cheng F, Pu Y, Cao J, Lin S, Zhu G, He B. Polymeric micelles amplify tumor oxidative stresses through combining PDT and glutathione depletion for synergistic cancer chemotherapy. Chemical Engineering Journal 2021;411:128561. [DOI: 10.1016/j.cej.2021.128561] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
567 Ma C, Nikiforov A, De Geyter N, Dai X, Morent R, Ostrikov KK. Future antiviral polymers by plasma processing. Prog Polym Sci 2021;118:101410. [PMID: 33967350 DOI: 10.1016/j.progpolymsci.2021.101410] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
568 Zhang B, Wan S, Peng X, Zhao M, Li S, Pu Y, He B. Human serum albumin-based doxorubicin prodrug nanoparticles with tumor pH-responsive aggregation-enhanced retention and reduced cardiotoxicity. J Mater Chem B 2020;8:3939-48. [PMID: 32236239 DOI: 10.1039/d0tb00327a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 38.0] [Reference Citation Analysis]
569 Zheng X, Jin Y, Liu X, Liu T, Wang W, Yu H. Photoactivatable nanogenerators of reactive species for cancer therapy. Bioact Mater 2021;6:4301-18. [PMID: 33997507 DOI: 10.1016/j.bioactmat.2021.04.030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
570 Jana D, Wang D, Bindra AK, Guo Y, Liu J, Zhao Y. Ultrasmall Alloy Nanozyme for Ultrasound- and Near-Infrared Light-Promoted Tumor Ablation. ACS Nano 2021;15:7774-82. [PMID: 33844517 DOI: 10.1021/acsnano.1c01830] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 47.0] [Reference Citation Analysis]
571 Fan GL, Deng FA, Zhou X, Liu LS, Huang JQ, Zhang DW, Sun YX, Chen AL, Cheng H, Li SY. Plasma membrane targeted photodynamic O2 economizer for hypoxic tumor therapy. Biomaterials 2021;273:120854. [PMID: 33932703 DOI: 10.1016/j.biomaterials.2021.120854] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
572 Casals G, Perramón M, Casals E, Portolés I, Fernández-Varo G, Morales-Ruiz M, Puntes V, Jiménez W. Cerium Oxide Nanoparticles: A New Therapeutic Tool in Liver Diseases. Antioxidants (Basel) 2021;10:660. [PMID: 33923136 DOI: 10.3390/antiox10050660] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
573 Gao F, Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front Chem 2021;9:649048. [PMID: 33968898 DOI: 10.3389/fchem.2021.649048] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
574 Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2021:cvab142. [PMID: 33881501 DOI: 10.1093/cvr/cvab142] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
575 Vallejo MCS, Moura NMM, Gomes ATPC, Joaquinito ASM, Faustino MAF, Almeida A, Gonçalves I, Serra VV, Neves MGPMS. The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2021;22:4121. [PMID: 33923523 DOI: 10.3390/ijms22084121] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
576 Wang W, Jin Y, Liu X, Chen F, Zheng X, Liu T, Yang Y, Yu H. Endogenous Stimuli‐Activatable Nanomedicine for Immune Theranostics for Cancer. Adv Funct Materials 2021;31:2100386. [DOI: 10.1002/adfm.202100386] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 18.0] [Reference Citation Analysis]
577 Huang G, Qiu Y, Yang F, Xie J, Chen X, Wang L, Yang H. Magnetothermally Triggered Free-Radical Generation for Deep-Seated Tumor Treatment. Nano Lett 2021;21:2926-31. [PMID: 33769824 DOI: 10.1021/acs.nanolett.1c00009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
578 Parra-Robert M, Zeng M, Shu Y, Fernández-Varo G, Perramón M, Desai D, Chen J, Guo D, Zhang X, Morales-Ruiz M, Rosenholm JM, Jiménez W, Puntes V, Casals E, Casals G. Mesoporous silica coated CeO2 nanozymes with combined lipid-lowering and antioxidant activity induce long-term improvement of the metabolic profile in obese Zucker rats. Nanoscale 2021;13:8452-66. [PMID: 33984104 DOI: 10.1039/d1nr00790d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
579 Qin J, Gong N, Liao Z, Zhang S, Timashev P, Huo S, Liang XJ. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale 2021;13:7108-18. [PMID: 33889907 DOI: 10.1039/d1nr01068a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
580 Zhao N, Xin H, Zhang L. Advanced Biomedical Applications of Reactive Oxygen Species-Based Nanomaterials in Lung Cancer. Front Chem 2021;9:649772. [PMID: 33898390 DOI: 10.3389/fchem.2021.649772] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
581 Li X, Wang Z, Ma M, Chen Z, Tang XL, Wang Z. Self-Assembly Iron Oxide Nanoclusters for Photothermal-Mediated Synergistic Chemo/Chemodynamic Therapy. J Immunol Res 2021;2021:9958239. [PMID: 33880384 DOI: 10.1155/2021/9958239] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
582 Zhang L, Zhu C, Huang R, Ding Y, Ruan C, Shen XC. Mechanisms of Reactive Oxygen Species Generated by Inorganic Nanomaterials for Cancer Therapeutics. Front Chem 2021;9:630969. [PMID: 33816437 DOI: 10.3389/fchem.2021.630969] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
583 Zhao M, Zhang N, Yang R, Chen D, Zhao Y. Which is Better for Nanomedicines: Nanocatalysts or Single-Atom Catalysts? Adv Healthc Mater 2021;10:e2001897. [PMID: 33326185 DOI: 10.1002/adhm.202001897] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
584 Chen K, Sun S, Wang J, Zhang X. Catalytic nanozymes for central nervous system disease. Coordination Chemistry Reviews 2021;432:213751. [DOI: 10.1016/j.ccr.2020.213751] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
585 Dag A, Cakilkaya E, Omurtag Ozgen PS, Atasoy S, Yigit Erdem G, Cetin B, Çavuş Kokuroǧlu A, Gürek AG. Phthalocyanine-Conjugated Glyconanoparticles for Chemo-photodynamic Combination Therapy. Biomacromolecules 2021;22:1555-67. [PMID: 33793222 DOI: 10.1021/acs.biomac.0c01811] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
586 Wu M, Zhang Z, Liu Z, Zhang J, Zhang Y, Ding Y, Huang T, Xiang D, Wang Z, Dai Y, Wan X, Wang S, Qian H, Sun Q, Li L. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021;37:101104. [DOI: 10.1016/j.nantod.2021.101104] [Cited by in Crossref: 51] [Cited by in F6Publishing: 57] [Article Influence: 51.0] [Reference Citation Analysis]
587 Xu X, Wang J, Wang M, Yuan X, Li L, Zhang C, Huang H, Jing T, Wang C, Tong C, Zhou L, Meng Y, Xu P, Kou J, Qiu Z, Li Z, Bian J. Structure-Enabled Discovery of Novel Macrocyclic Inhibitors Targeting Glutaminase 1 Allosteric Binding Site. J Med Chem 2021;64:4588-611. [PMID: 33792311 DOI: 10.1021/acs.jmedchem.0c02044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
588 Xiang X, Pang H, Ma T, Du F, Li L, Huang J, Ma L, Qiu L. Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer. J Nanobiotechnology 2021;19:92. [PMID: 33789692 DOI: 10.1186/s12951-021-00835-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
589 Chen Y, Ji Q, Zhang G, Liu H, Qu J. Synergetic Lipid Extraction with Oxidative Damage Amplifies Cell-Membrane-Destructive Stresses and Enables Rapid Sterilization. Angew Chem Int Ed Engl 2021;60:7744-51. [PMID: 33381904 DOI: 10.1002/anie.202013593] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
590 Kermani F, Mollazadeh S, Kargozar S, Vahdati Khakhi J. Improved osteogenesis and angiogenesis of theranostic ions doped calcium phosphates (CaPs) by a simple surface treatment process: A state-of-the-art study. Mater Sci Eng C Mater Biol Appl 2021;124:112082. [PMID: 33947573 DOI: 10.1016/j.msec.2021.112082] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
591 Sun Q, Wu J, Jin L, Hong L, Wang F, Mao Z, Wu M. Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. J Mater Chem B 2020;8:7253-63. [PMID: 32638824 DOI: 10.1039/d0tb01063d] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 38.0] [Reference Citation Analysis]
592 Liu X, Liu J, Chen S, Xie Y, Fan Q, Zhou J, Bao J, Wei T, Dai Z. Dual-path modulation of hydrogen peroxide to ameliorate hypoxia for enhancing photodynamic/starvation synergistic therapy. J Mater Chem B 2020;8:9933-42. [PMID: 33034312 DOI: 10.1039/d0tb01556c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
593 Villa I, Villa C, Crapanzano R, Secchi V, Tawfilas M, Trombetta E, Porretti L, Brambilla A, Campione M, Torrente Y, Vedda A, Monguzzi A. Functionalized Scintillating Nanotubes for Simultaneous Radio- and Photodynamic Therapy of Cancer. ACS Appl Mater Interfaces 2021;13:12997-3008. [PMID: 33719410 DOI: 10.1021/acsami.1c02504] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
594 Ruan C, Su K, Zhao D, Lu A, Zhong C. Nanomaterials for Tumor Hypoxia Relief to Improve the Efficacy of ROS-Generated Cancer Therapy. Front Chem 2021;9:649158. [PMID: 33954158 DOI: 10.3389/fchem.2021.649158] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
595 Rowińska I, Szyperska-Ślaska A, Zariczny P, Pasławski R, Kramkowski K, Kowalczyk P. The Influence of Diet on Oxidative Stress and Inflammation Induced by Bacterial Biofilms in the Human Oral Cavity. Materials (Basel) 2021;14:1444. [PMID: 33809616 DOI: 10.3390/ma14061444] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
596 Adhikari A, Mondal S, Das M, Ghosh R, Biswas P, Darbar S, Singh S, Das AK, Bhattacharya SS, Pal D, Mallick AK, Pal SK. Redox Buffering Capacity of Nanomaterials as an Index of ROS-based Therapeutics and Toxicity: A Preclinical Animal Study.. [DOI: 10.1101/2021.03.14.435286] [Reference Citation Analysis]
597 Chen Q, Sun S, Lin H, Li Z, Wu A, Liu X, Wu FG, Zhang W. Supra-Carbon Dots Formed by Fe3+-Driven Assembly for Enhanced Tumor-Specific Photo-Mediated and Chemodynamic Synergistic Therapy. ACS Appl Bio Mater 2021;4:2759-68. [PMID: 35014315 DOI: 10.1021/acsabm.0c01663] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
598 Das M, Solanki A, Ganesh A, Thakore S. Emerging hybrid biomaterials for oxidative stress induced photodynamic therapy. Photodiagnosis Photodyn Ther 2021;34:102259. [PMID: 33737219 DOI: 10.1016/j.pdpdt.2021.102259] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
599 Zhu Y, Wang W, Cheng J, Qu Y, Dai Y, Liu M, Yu J, Wang C, Wang H, Wang S, Zhao C, Wu Y, Liu Y. Stimuli‐Responsive Manganese Single‐Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angew Chem Int Ed 2021;60:9480-8. [DOI: 10.1002/anie.202017152] [Cited by in Crossref: 95] [Cited by in F6Publishing: 111] [Article Influence: 95.0] [Reference Citation Analysis]
600 Zhu Y, Wang W, Cheng J, Qu Y, Dai Y, Liu M, Yu J, Wang C, Wang H, Wang S, Zhao C, Wu Y, Liu Y. Stimuli‐Responsive Manganese Single‐Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angew Chem 2021;133:9566-74. [DOI: 10.1002/ange.202017152] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 28.0] [Reference Citation Analysis]
601 Zeng Z, He X, Li C, Lin S, Chen H, Liu L, Feng X. Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease. Biomaterials 2021;271:120753. [PMID: 33725585 DOI: 10.1016/j.biomaterials.2021.120753] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
602 Liu J, Cheng W, Wang Y, Fan X, Shen J, Liu H, Wang A, Hui A, Nichols F, Chen S. Cobalt-Doped Zinc Oxide Nanoparticle–MoS 2 Nanosheet Composites as Broad-Spectrum Bactericidal Agents. ACS Appl Nano Mater 2021;4:4361-70. [DOI: 10.1021/acsanm.0c02875] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
603 Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. Nanomicro Lett 2021;13:88. [PMID: 34138348 DOI: 10.1007/s40820-021-00598-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
604 Dai Y, Ding Y, Li L. Nanozymes for regulation of reactive oxygen species and disease therapy. Chinese Chemical Letters 2021. [DOI: 10.1016/j.cclet.2021.03.036] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 19.0] [Reference Citation Analysis]
605 He C, Zhang X, Chen C, Liu X, Chen Y, Yan R, Fan T, Gai Y, Lee RJ, Ma X, Luo J, Lu Y, Yang T, Xiang G. A solid lipid coated calcium peroxide nanocarrier enables combined cancer chemo/chemodynamic therapy with O2/H2O2 self-sufficiency. Acta Biomater 2021;122:354-64. [PMID: 33359323 DOI: 10.1016/j.actbio.2020.12.036] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 19.0] [Reference Citation Analysis]
606 Cao B, Li Y, Zhou Q, Li B, Su X, Yin H, Shi Y. Synergistically improving myricetin ESIPT and antioxidant activity via dexterously trimming atomic electronegativity. Journal of Molecular Liquids 2021;325:115272. [DOI: 10.1016/j.molliq.2020.115272] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
607 Godard J, Chapron D, Bregier F, Rosilio V, Sol V. Synthesis and supramolecular arrangement of new stearoyl acid-based phenalenone derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;612:125988. [DOI: 10.1016/j.colsurfa.2020.125988] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
608 Hu H, Feng W, Qian X, Yu L, Chen Y, Li Y. Emerging Nanomedicine-Enabled/Enhanced Nanodynamic Therapies beyond Traditional Photodynamics. Adv Mater 2021;33:e2005062. [PMID: 33565157 DOI: 10.1002/adma.202005062] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 41.0] [Reference Citation Analysis]
609 Chen Y, Ji Q, Zhang G, Liu H, Qu J. Synergetic Lipid Extraction with Oxidative Damage Amplifies Cell‐Membrane‐Destructive Stresses and Enables Rapid Sterilization. Angew Chem 2021;133:7823-30. [DOI: 10.1002/ange.202013593] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
610 Liu X, Liang T, Zhang R, Ding Q, Wu S, Li C, Lin Y, Ye Y, Zhong Z, Zhou M. Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl Mater Interfaces 2021;13:9643-55. [PMID: 33606494 DOI: 10.1021/acsami.0c21486] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 30.0] [Reference Citation Analysis]
611 Vitiello G, Serpe L, Blázquez-Castro A. Editorial: The Role of Reactive Oxygen Species in Chemical and Biochemical Processes. Front Chem 2021;9:642523. [PMID: 33681150 DOI: 10.3389/fchem.2021.642523] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
612 Wang Y, Shi L, Wu W, Qi G, Zhu X, Liu B. Tumor‐Activated Photosensitization and Size Transformation of Nanodrugs. Adv Funct Mater 2021;31:2010241. [DOI: 10.1002/adfm.202010241] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
613 Chen X, Xing H, Zhou Z, Hao Y, Zhang X, Qi F, Zhao J, Gao L, Wang X. Nanozymes go oral: nanocatalytic medicine facilitates dental health. J Mater Chem B 2021;9:1491-502. [PMID: 33427841 DOI: 10.1039/d0tb02763d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
614 He J, Fu LH, Qi C, Lin J, Huang P. Metal peroxides for cancer treatment. Bioact Mater 2021;6:2698-710. [PMID: 33665502 DOI: 10.1016/j.bioactmat.2021.01.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
615 Mei J, Tian H. Most recent advances on enzyme‐activatable optical probes for bioimaging. Aggregate 2021;2. [DOI: 10.1002/agt2.32] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
616 Xu G, Zhang HX, Li XQ, Yang DC, Liu JY. Red light triggered photodynamic-chemo combination therapy using a prodrug caged by photosensitizer. Eur J Med Chem 2021;215:113251. [PMID: 33611187 DOI: 10.1016/j.ejmech.2021.113251] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
617 Luo S, Liu Z, Liu D, Zhang H, Guo L, Rong M, Kong MG. Modeling study of the indirect treatment of phosphate buffered saline in surface air plasma. J Phys D: Appl Phys 2021;54:065203. [DOI: 10.1088/1361-6463/abc19c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
618 Dao NV, Ercole F, Urquhart MC, Kaminskas LM, Nowell CJ, Davis TP, Sloan EK, Whittaker MR, Quinn JF. Trisulfide linked cholesteryl PEG conjugate attenuates intracellular ROS and collagen-1 production in a breast cancer co-culture model. Biomater Sci 2021;9:835-46. [PMID: 33231231 DOI: 10.1039/d0bm01544j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
619 Qi P, Chen Q, Tu D, Yao S, Zhang Y, Wang J, Xie C, Pan C, Peng H. The potential role of borophene as a radiosensitizer in boron neutron capture therapy (BNCT) and particle therapy (PT). Biomater Sci 2020;8:2778-85. [PMID: 32342085 DOI: 10.1039/d0bm00318b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
620 Xu Y, Yang W, Zhang B. ROS-responsive probes for low-background optical imaging: a review. Biomed Mater 2021;16:022002. [PMID: 33142272 DOI: 10.1088/1748-605X/abc745] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
621 Xu B, Wang Z, Zhao W. Sphere–like aggregates of porphyrin as phototherapeutic agent for synergistic cancer treatment. Dyes and Pigments 2021;186:108926. [DOI: 10.1016/j.dyepig.2020.108926] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
622 Fu LH, Wan Y, Qi C, He J, Li C, Yang C, Xu H, Lin J, Huang P. Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy. Adv Mater 2021;33:e2006892. [PMID: 33394515 DOI: 10.1002/adma.202006892] [Cited by in Crossref: 172] [Cited by in F6Publishing: 184] [Article Influence: 172.0] [Reference Citation Analysis]
623 Wang Y, Ding Y, Yao D, Dong H, Ji C, Wu J, Hu Y, Yuan A. Copper‐Based Nanoscale Coordination Polymers Augmented Tumor Radioimmunotherapy for Immunogenic Cell Death Induction and T‐Cell Infiltration. Small 2021;17:2006231. [DOI: 10.1002/smll.202006231] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
624 Geng P, Yu N, Zhang J, Jin Z, Wen M, Jiang Q, Kang L, Peng C, Li M, Zhang H, Zhu M, Chen Z. One Responsive Stone, Three Birds: Mn(III)-Hemoporfin Frameworks with Glutathione-Enhanced Degradation, MRI, and Sonodynamic Therapy. Adv Healthc Mater 2021;10:e2001463. [PMID: 33274856 DOI: 10.1002/adhm.202001463] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
625 Maślana K, Żywicka A, Wenelska K, Mijowska E. Boosting of Antibacterial Performance of Cellulose Based Paper Sheet via TiO2 Nanoparticles. Int J Mol Sci 2021;22:1451. [PMID: 33535598 DOI: 10.3390/ijms22031451] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
626 Huang WQ, Wang F, Shen AZ, Zhang L, Nie X, Zhang Z, Chen G, Xia L, Wang LH, Ding SG, Meng QY, Zhang WJ, Hong CY, You YZ. Single nanosheet can sustainably generate oxygen and inhibit respiration simultaneously in cancer cells. Mater Horiz 2021;8:597-605. [PMID: 34821276 DOI: 10.1039/d0mh01446j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
627 Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment. Adv Sci (Weinh) 2021;8:2002797. [PMID: 33552863 DOI: 10.1002/advs.202002797] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 51.0] [Reference Citation Analysis]
628 Zhang M, Dai Z, Theivendran S, Gu Z, Zhao L, Song H, Yang Y, Yu C. Nanotechnology enabled reactive species regulation in biosystems for boosting cancer immunotherapy. Nano Today 2021;36:101035. [DOI: 10.1016/j.nantod.2020.101035] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
629 Jeon K, Andoy NMO, Schmitt CW, Xue Y, Barner L, Sullan RMA. Size-controlled synthesis of bioinspired polyserotonin nanoparticles with free radical scavenging activity. J Mater Chem B 2021;9:634-7. [PMID: 33337466 DOI: 10.1039/d0tb02383c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
630 Yang P, Tao J, Chen F, Chen Y, He J, Shen K, Zhao P, Li Y. Multienzyme-Mimic Ultrafine Alloyed Nanoparticles in Metal Organic Frameworks for Enhanced Chemodynamic Therapy. Small 2021;17:e2005865. [PMID: 33502106 DOI: 10.1002/smll.202005865] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 35.0] [Reference Citation Analysis]
631 Ai Y, You J, Gao J, Wang J, Sun H, Ding M, Liang Q. Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Res 2021;14:2644-53. [DOI: 10.1007/s12274-020-3267-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
632 Ding T, Wang Z, Xia D, Zhu J, Huang J, Xing Y, Wang S, Chen Y, Zhang J, Cai K. Long‐Lasting Reactive Oxygen Species Generation by Porous Redox Mediator‐Potentiated Nanoreactor for Effective Tumor Therapy. Adv Funct Mater 2021;31:2008573. [DOI: 10.1002/adfm.202008573] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
633 Chen Q, Ma Y, Bai P, Li Q, Canup BSB, Long D, Ke B, Dai F, Xiao B, Li C. Tumor Microenvironment-Responsive Nanococktails for Synergistic Enhancement of Cancer Treatment via Cascade Reactions. ACS Appl Mater Interfaces 2021;13:4861-73. [PMID: 33471499 DOI: 10.1021/acsami.0c20268] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
634 Zhou X, Shen B, Zhai J, Hedin N. Reactive Oxygenated Species Generated on Iodide‐Doped BiVO 4 /BaTiO 3 Heterostructures with Ag/Cu Nanoparticles by Coupled Piezophototronic Effect and Plasmonic Excitation. Adv Funct Mater 2021;31:2009594. [DOI: 10.1002/adfm.202009594] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 28.0] [Reference Citation Analysis]
635 Su X, Yuan C, Wang L, Chen R, Li X, Zhang Y, Liu C, Liu X, Liang W, Xing Y. The Beneficial Effects of Saffron Extract on Potential Oxidative Stress in Cardiovascular Diseases. Oxid Med Cell Longev 2021;2021:6699821. [PMID: 33542784 DOI: 10.1155/2021/6699821] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
636 Chen W, Cheng H, Jiang Q, Xia W. The characterization and biological activities of synthetic N, O-selenized chitosan derivatives. Int J Biol Macromol 2021;173:504-12. [PMID: 33460653 DOI: 10.1016/j.ijbiomac.2021.01.084] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
637 Zhao F, Zhou S, Zhang Y. Ultrasensitive Detection of Hydrogen Peroxide Using Bi 2 Te 3 Electrochemical Sensors. ACS Appl Mater Interfaces 2021;13:4761-7. [DOI: 10.1021/acsami.0c19911] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
638 Mochizuki C, Nakamura J, Nakamura M. Development of Non-Porous Silica Nanoparticles towards Cancer Photo-Theranostics. Biomedicines 2021;9:73. [PMID: 33451074 DOI: 10.3390/biomedicines9010073] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
639 Fang Y, Dehaen W. Fluorescent Probes for Selective Recognition of Hypobromous Acid: Achievements and Future Perspectives. Molecules 2021;26:E363. [PMID: 33445736 DOI: 10.3390/molecules26020363] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
640 Huang Z, Wang Y, Yao D, Wu J, Hu Y, Yuan A. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun 2021;12:145. [PMID: 33420008 DOI: 10.1038/s41467-020-20243-8] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 43.0] [Reference Citation Analysis]
641 Sundaram A, Francis BM, Dhanabalan SC, Ponraj JS. Transition metal carbide—MXene. Handbook of Carbon-Based Nanomaterials 2021. [DOI: 10.1016/b978-0-12-821996-6.00017-8] [Reference Citation Analysis]
642 Moin I, Mittal D, Verma AK. Understanding ROS Induced DNA Damage for Therapeutics. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2021. [DOI: 10.1007/978-981-15-4501-6_53-1] [Reference Citation Analysis]
643 Rehman Y, Cheng Z, Wang X, Huang XF, Konstantinov K. Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy. J Mater Chem B 2021;9:5805-17. [PMID: 34231637 DOI: 10.1039/d1tb01036k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
644 Wang H, Jia R, Hong M, Miao H, Ni B, Niu T. Hydroxyl radical-mediated oxidative cleavage of CC bonds and further esterification reaction by heterogeneous semiconductor photocatalysis. Green Chem 2021;23:6591-7. [DOI: 10.1039/d1gc01931g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
645 Zhang Y, Li X, Zhang Y, Wei J, Wang W, Dong C, Xue Y, Liu M, Pei R. Engineered Fe 3 O 4 -based nanomaterials for diagnosis and therapy of cancer. New J Chem 2021;45:7918-41. [DOI: 10.1039/d1nj00419k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
646 Li A, Yang X, Chen J. A novel route to size-controlled MIL-53(Fe) metal–organic frameworks for combined chemodynamic therapy and chemotherapy for cancer. RSC Adv 2021;11:10540-7. [DOI: 10.1039/d0ra09915e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
647 Hu J, Sun C, Li S, Yuan Y, Zhang Y. Heterotellurium-containing macrocycles towards degradable tellurium-functionalized polymers. Polym Chem 2021;12:4467-71. [DOI: 10.1039/d1py00703c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
648 Guo Z, He H, Zhang Y, Rao J, Yang T, Li T, Wang L, Shi M, Wang M, Qiu S, Song X, Ke H, Chen H. Heavy-Atom-Modulated Supramolecular Assembly Increases Antitumor Potency against Malignant Breast Tumors via Tunable Cooperativity. Adv Mater 2021;33:e2004225. [PMID: 33270303 DOI: 10.1002/adma.202004225] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
649 Yan L, Mu J, Ma P, Li Q, Yin P, Liu X, Cai Y, Yu H, Liu J, Wang G, Liu A. Gold nanoplates with superb photothermal efficiency and peroxidase-like activity for rapid and synergistic antibacterial therapy. Chem Commun 2021;57:1133-6. [DOI: 10.1039/d0cc06925f] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 27.0] [Reference Citation Analysis]
650 Hsu P, Almutairi A. Recent progress of redox-responsive polymeric nanomaterials for controlled release. J Mater Chem B 2021;9:2179-88. [DOI: 10.1039/d0tb02190c] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
651 Zhu W, Fang T, Zhang W, Liang A, Zhang H, Zhang Z, Zhang X, Li F. A ROS scavenging protein nanocage for in vitro and in vivo antioxidant treatment. Nanoscale 2021;13:4634-43. [DOI: 10.1039/d0nr08878a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
652 Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. Adv Mater 2021;33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Cited by in Crossref: 88] [Cited by in F6Publishing: 94] [Article Influence: 88.0] [Reference Citation Analysis]
653 Jiang Q, Yang X, Xiang P, Dudek M, Matczyszyn K, Samoc M, Tian X, Zhang Q, Luo Y, Wang D, Shi P. Self-assembled heterometallic complexes showing enhanced two-photon absorption and their distribution in living cells. New J Chem 2021;45:4994-5001. [DOI: 10.1039/d0nj05219a] [Reference Citation Analysis]
654 Yang R, Fu S, Li R, Zhang L, Xu Z, Cao Y, Cui H, Kang Y, Xue P. Facile engineering of silk fibroin capped AuPt bimetallic nanozyme responsive to tumor microenvironmental factors for enhanced nanocatalytic therapy. Theranostics 2021;11:107-16. [PMID: 33391464 DOI: 10.7150/thno.50486] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
655 Li Y, Zhou R, Xiao D, Shi S, Peng S, Wu S, Wu P, Lin Y. Polypeptide uploaded efficient nanophotosensitizers to overcome photodynamic resistance for enhanced anticancer therapy. Chemical Engineering Journal 2021;403:126344. [DOI: 10.1016/j.cej.2020.126344] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
656 Xu H, Zhong J, Zhuang W, Jiang J, Ma B, He H, Li G, Liao Y, Wang Y. A bifunctional mitochondrial targeting AIE-active fluorescent probe with high sensitivity to hydrogen peroxide and viscosity for fatty liver diagnosis. New J Chem 2021;45:12138-44. [DOI: 10.1039/d1nj01712h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
657 Wang S, Fang Y, Zhang Z, Jin Q, Ji J. Bacterial infection microenvironment sensitive prodrug micelles with enhanced photodynamic activities for infection control. Colloid and Interface Science Communications 2021;40:100354. [DOI: 10.1016/j.colcom.2020.100354] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 16.0] [Reference Citation Analysis]
658 Zheng H, Wang S, Zhou L, He X, Cheng Z, Cheng F, Liu Z, Wang X, Chen Y, Zhang Q. Injectable multi-responsive micelle/nanocomposite hybrid hydrogel for bioenzyme and photothermal augmented chemodynamic therapy of skin cancer and bacterial infection. Chemical Engineering Journal 2021;404:126439. [DOI: 10.1016/j.cej.2020.126439] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 26.0] [Reference Citation Analysis]
659 Zhou Y, Zhang D, He G, Liu C, Tu Y, Li X, Zhang Q, Wu X, Liu R. A lysosomal targeted NIR photosensitizer for photodynamic therapy and two-photon fluorescence imaging. J Mater Chem B 2021;9:1009-17. [DOI: 10.1039/d0tb02692a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
660 García-álvarez F, Martínez-garcía M. Dendrimer Porphyrins: Applications in Nanomedicine. COC 2020;24:2801-22. [DOI: 10.2174/1385272824999201026203527] [Reference Citation Analysis]
661 Vallejo MCS, Moura NMM, Ferreira Faustino MA, Almeida A, Gonçalves I, Serra VV, Neves MGPMS. An Insight into the Role of Non-Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2020;22:E234. [PMID: 33379392 DOI: 10.3390/ijms22010234] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
662 Liu Y, Zhen W, Wang Y, Song S, Zhang H. Na 2 S 2 O 8 Nanoparticles Trigger Antitumor Immunotherapy through Reactive Oxygen Species Storm and Surge of Tumor Osmolarity. J Am Chem Soc 2020;142:21751-7. [DOI: 10.1021/jacs.0c09482] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 26.5] [Reference Citation Analysis]
663 Sui L, Wang J, Xiao Z, Yang Y, Yang Z, Ai K. ROS-Scavenging Nanomaterials to Treat Periodontitis. Front Chem 2020;8:595530. [PMID: 33330384 DOI: 10.3389/fchem.2020.595530] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
664 Wang W, Kang PM. Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants (Basel) 2020;9:E1292. [PMID: 33348578 DOI: 10.3390/antiox9121292] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 17.5] [Reference Citation Analysis]
665 Li C, Hu Y, Nie Q, Chen S, Li G, Li L, Chen S, Tang B, Zhang J. A reactive oxygen species-responsive antioxidant nanotherapy for the treatment of drug-induced tissue and organ injury. Biomater Sci 2020;8:7117-31. [PMID: 33211787 DOI: 10.1039/d0bm01660h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
666 Yang B, Shi J. Ascorbate Tumor Chemotherapy by An Iron-Engineered Nanomedicine-Catalyzed Tumor-Specific Pro-Oxidation. J Am Chem Soc 2020;142:21775-85. [PMID: 33314928 DOI: 10.1021/jacs.0c09984] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 17.5] [Reference Citation Analysis]
667 Liu H, Han Y, Wang T, Zhang H, Xu Q, Yuan J, Li Z. Targeting Microglia for Therapy of Parkinson's Disease by Using Biomimetic Ultrasmall Nanoparticles. J Am Chem Soc 2020;142:21730-42. [PMID: 33315369 DOI: 10.1021/jacs.0c09390] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 17.5] [Reference Citation Analysis]
668 Yang W, Deng H, Zhu S, Lau J, Tian R, Wang S, Zhou Z, Yu G, Rao L, He L, Ma Y, Chen X. Size-transformable antigen-presenting cell-mimicking nanovesicles potentiate effective cancer immunotherapy. Sci Adv 2020;6:eabd1631. [PMID: 33310853 DOI: 10.1126/sciadv.abd1631] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
669 Liu J, Huang J, Zhang L, Lei J. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev 2021;50:1188-218. [PMID: 33283806 DOI: 10.1039/d0cs00178c] [Cited by in Crossref: 62] [Cited by in F6Publishing: 69] [Article Influence: 31.0] [Reference Citation Analysis]
670 Kuo SH, Wu PT, Huang JY, Chiu CP, Yu J, Liao MY. Fabrication of Anisotropic Cu Ferrite-Polymer Core-Shell Nanoparticles for Photodynamic Ablation of Cervical Cancer Cells. Nanomaterials (Basel) 2020;10:E2429. [PMID: 33291730 DOI: 10.3390/nano10122429] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
671 Liu Q, Kim Y, Im G, Zhu J, Wu Y, Liu Y, Bhang SH. Inorganic Nanoparticles Applied as Functional Therapeutics. Adv Funct Mater 2021;31:2008171. [DOI: 10.1002/adfm.202008171] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
672 Fatima B, Hussain D, Saeed A, Sajid MS, Majeed S, Nawaz R, Ashiq MN, Najam-Ul-Haq M, Mehmood R. Tellurium doped zinc imidazole framework (Te@ZIF-8) for quantitative determination of hydrogen peroxide from serum of pancreatic cancer patients. Sci Rep 2020;10:21077. [PMID: 33273679 DOI: 10.1038/s41598-020-78115-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
673 Ren K, Keshri P, Wu R, Sun Z, Yu Q, Tian Q, Zhao B, Bagheri Y, Xie Y, You M. A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angew Chem 2020;132:22170-22174. [DOI: 10.1002/ange.202010106] [Reference Citation Analysis]
674 Yang B, Shi J. Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angew Chem 2020;132:22013-22022. [DOI: 10.1002/ange.202004317] [Reference Citation Analysis]
675 Gao D, Gao Y, Shen J, Wang Q. Modified nanoscale metal organic framework-based nanoplatforms in photodynamic therapy and further applications. Photodiagnosis Photodyn Ther 2020;32:102026. [PMID: 32979544 DOI: 10.1016/j.pdpdt.2020.102026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
676 Li F, Qiu Y, Xia F, Sun H, Liao H, Xie A, Lee J, Lin P, Wei M, Shao Y, Yang B, Weng Q, Ling D. Dual detoxification and inflammatory regulation by ceria nanozymes for drug-induced liver injury therapy. Nano Today 2020;35:100925. [DOI: 10.1016/j.nantod.2020.100925] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 22.0] [Reference Citation Analysis]
677 Liu B, Thayumanavan S. Mechanistic Investigation on Oxidative Degradation of ROS-Responsive Thioacetal/Thioketal Moieties and Their Implications. Cell Reports Physical Science 2020;1:100271. [DOI: 10.1016/j.xcrp.2020.100271] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
678 Wang L, Shi X, Zhang Y, Liu A, Liu S, Wang Z, Pang D. CdZnSeS quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells. Electrochimica Acta 2020;362:137107. [DOI: 10.1016/j.electacta.2020.137107] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
679 Zheng Y, Jiang H, Wang X. Facet-dependent antibacterial activity of Au nanocrystals. Chinese Chemical Letters 2020;31:3183-9. [DOI: 10.1016/j.cclet.2020.05.035] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
680 Meng X, Zhang X, Liu M, Cai B, He N, Wang Z. Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today 2020;21:100864. [DOI: 10.1016/j.apmt.2020.100864] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 20.5] [Reference Citation Analysis]
681 Jiang F, Ding B, Liang S, Zhao Y, Cheng Z, Xing B, Ma P, Lin J. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/ chemodynamic therapy/ immunotherapy. Biomaterials 2021;268:120545. [PMID: 33253965 DOI: 10.1016/j.biomaterials.2020.120545] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 29.5] [Reference Citation Analysis]
682 Lei H, Wang X, Bai S, Gong F, Yang N, Gong Y, Hou L, Cao M, Liu Z, Cheng L. Biodegradable Fe-Doped Vanadium Disulfide Theranostic Nanosheets for Enhanced Sonodynamic/Chemodynamic Therapy. ACS Appl Mater Interfaces 2020;12:52370-82. [PMID: 33196160 DOI: 10.1021/acsami.0c14647] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 19.0] [Reference Citation Analysis]
683 Alshammari RH, Rajesh UC, Morgan DG, Zaleski JM. Au-Cu@PANI Alloy Core Shells for Aerobic Fibrin Degradation under Visible Light Exposure. ACS Appl Bio Mater 2020;3:7631-8. [PMID: 35019503 DOI: 10.1021/acsabm.0c00833] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
684 Brinker CJ, Butler KS, Garofalini SH. Are nearly free silanols a unifying structural determinant of silica particle toxicity? Proc Natl Acad Sci U S A 2020;117:30006-8. [PMID: 33188085 DOI: 10.1073/pnas.2021078117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
685 Liu Z, Wan P, Liu Z, Yang M, Li S, Wang Y, Gan Y. Photothermal Generation of Oxygen-Irrelevant Free Radicals with Simultaneous Suppression of Glutathione Synthesis for an Enhanced Photonic Thermodynamic Cancer Therapy. ACS Biomater Sci Eng 2020;6:6186-94. [PMID: 33449657 DOI: 10.1021/acsbiomaterials.0c00889] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
686 Zhang H, Li S, Liu Y, Yu Y, Lin S, Wang Q, Miao L, Wei H, Sun W. Fe3O4@GO magnetic nanocomposites protect mesenchymal stem cells and promote osteogenic differentiation of rat bone marrow mesenchymal stem cells. Biomater Sci 2020;8:5984-93. [PMID: 32985626 DOI: 10.1039/d0bm00906g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
687 Liu Z, Zhang B, Xia S, Fang L, Gou S. ROS-responsive and multifunctional anti-Alzheimer prodrugs: Tacrine-ibuprofen hybrids via a phenyl boronate linker. Eur J Med Chem 2021;212:112997. [PMID: 33189440 DOI: 10.1016/j.ejmech.2020.112997] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
688 Yang Z, Luo Y, Hu Y, Liang K, He G, Chen Q, Wang Q, Chen H. Photothermo‐Promoted Nanocatalysis Combined with H 2 S‐Mediated Respiration Inhibition for Efficient Cancer Therapy. Adv Funct Mater 2021;31:2007991. [DOI: 10.1002/adfm.202007991] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 19.0] [Reference Citation Analysis]
689 Pei J, Zhao R, Mu X, Wang J, Liu C, Zhang XD. Single-atom nanozymes for biological applications. Biomater Sci 2020;8:6428-41. [PMID: 33141122 DOI: 10.1039/d0bm01447h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
690 Tang Q, Cao S, Ma T, Xiang X, Luo H, Borovskikh P, Rodriguez RD, Guo Q, Qiu L, Cheng C. Engineering Biofunctional Enzyme‐Mimics for Catalytic Therapeutics and Diagnostics. Adv Funct Mater 2021;31:2007475. [DOI: 10.1002/adfm.202007475] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
691 Tian Z, Liu H, Guo Z, Gou W, Liang Z, Qu Y, Han L, Liu L. A pH‐Responsive Polymer‐CeO 2 Hybrid to Catalytically Generate Oxidative Stress for Tumor Therapy. Small 2020;16:2004654. [DOI: 10.1002/smll.202004654] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
692 Drăgan M, Stan CD, Iacob AT, Dragostin OM, Boancă M, Lupuşoru CE, Zamfir CL, Profire L. Biological Evaluation of Azetidine-2-One Derivatives of Ferulic Acid as Promising Anti-Inflammatory Agents. Processes 2020;8:1401. [DOI: 10.3390/pr8111401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
693 Zhang W, Liu S, Han D, He Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine. Acta Biomater 2020;117:93-107. [PMID: 32980543 DOI: 10.1016/j.actbio.2020.09.034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
694 Li R, Zheng D, Han Z, Xie T, Zhang C, An J, Xu R, Sun Y, Zhang X. mHealth: A smartphone-controlled, wearable platform for tumour treatment. Materials Today 2020;40:91-100. [DOI: 10.1016/j.mattod.2020.07.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
695 Cheng Y, Ji Y, Tong J. Triple stimuli-responsive supramolecular nanoassembly with mitochondrial targetability for chemophotothermal therapy. Journal of Controlled Release 2020;327:35-49. [DOI: 10.1016/j.jconrel.2020.08.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
696 Ren Y, Liu H, Liu X, Zheng Y, Li Z, Li C, Yeung KWK, Zhu S, Liang Y, Cui Z, Wu S. Photoresponsive Materials for Antibacterial Applications. Cell Reports Physical Science 2020;1:100245. [DOI: 10.1016/j.xcrp.2020.100245] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 26.5] [Reference Citation Analysis]
697 Sun S, Chen Q, Ran G, Song Q. Organic molecule enhanced 1O2 electrochemiluminescence from the phase transformation of amorphous calcium phosphate. Electrochimica Acta 2020;361:137062. [DOI: 10.1016/j.electacta.2020.137062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
698 Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 29.0] [Reference Citation Analysis]
699 Wang Y, Shi L, Ma D, Xu S, Wu W, Xu L, Panahandeh-Fard M, Zhu X, Wang B, Liu B. Tumor-Activated and Metal-Organic Framework Assisted Self-Assembly of Organic Photosensitizers. ACS Nano 2020;14:13056-68. [PMID: 33016697 DOI: 10.1021/acsnano.0c04518] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
700 Jiang Q, Pan M, Hu J, Sun J, Fan L, Zou Z, Wei J, Yang X, Liu X. Regulation of redox balance using a biocompatible nanoplatform enhances phototherapy efficacy and suppresses tumor metastasis. Chem Sci 2020;12:148-57. [PMID: 34163586 DOI: 10.1039/d0sc04983b] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
701 Wang G, Wang Z, Sun N, Cai Y, Yang X. Reactive oxygen species-responsive silk sericin microcapsules used for antioxidative stress damage. Microsc Res Tech 2021;84:618-26. [PMID: 33089567 DOI: 10.1002/jemt.23620] [Reference Citation Analysis]
702 Li L, Yang Z, Chen X. Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy. Acc Chem Res 2020;53:2044-54. [PMID: 32877161 DOI: 10.1021/acs.accounts.0c00334] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 24.0] [Reference Citation Analysis]
703 Hu R, Chen Z, Dai C, Guo X, Feng W, Liu Z, Lin H, Chen Y, Wu R. Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. Biomaterials 2021;269:120455. [PMID: 33162174 DOI: 10.1016/j.biomaterials.2020.120455] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
704 Martinez GP, Zabaleta ME, Di Giulio C, Charris JE, Mijares MR. The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. CPD 2020;26:4467-85. [DOI: 10.2174/1381612826666200707132920] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
705 Yao Y, Liu X, Shao Y, Ying Y, Ping J. Noble metal alloy nanoparticles coated flexible MoS2 paper for the determination of reactive oxygen species. Biosens Bioelectron 2020;166:112463. [PMID: 32750678 DOI: 10.1016/j.bios.2020.112463] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
706 Mehrotra R, Richezzi M, Palopoli C, Hureau C, Signorella SR. Effect of coordination dissymmetry on the catalytic activity of manganese catalase mimics. J Inorg Biochem 2020;213:111264. [PMID: 33045594 DOI: 10.1016/j.jinorgbio.2020.111264] [Reference Citation Analysis]
707 Ren K, Keshri P, Wu R, Sun Z, Yu Q, Tian Q, Zhao B, Bagheri Y, Xie Y, You M. A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angew Chem Int Ed Engl 2020;59:21986-90. [PMID: 32797667 DOI: 10.1002/anie.202010106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
708 Chen T, Huang R, Liang J, Zhou B, Guo XL, Shen XC, Jiang BP. Natural Polyphenol-Vanadium Oxide Nanozymes for Synergistic Chemodynamic/Photothermal Therapy. Chemistry 2020;26:15159-69. [PMID: 32737907 DOI: 10.1002/chem.202002335] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
709 Yuan R, Huang Y, Chan L, He D, Chen T. Engineering EHD1-Targeted Natural Borneol Nanoemulsion Potentiates Therapeutic Efficacy of Gefitinib against Nonsmall Lung Cancer. ACS Appl Mater Interfaces 2020;12:45714-27. [PMID: 32927941 DOI: 10.1021/acsami.0c08069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
710 Zhao Y, Xie R, Yodsanit N, Ye M, Wang Y, Gong S. Biomimetic fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy. Nano Today 2020;35:100986. [PMID: 33072177 DOI: 10.1016/j.nantod.2020.100986] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
711 Peng R, Offenhäusser A, Ermolenko Y, Mourzina Y. Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media. Sensors and Actuators B: Chemical 2020;321:128437. [DOI: 10.1016/j.snb.2020.128437] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
712 Liu T, Yang K, Liu Z. Recent advances in functional nanomaterials for X-ray triggered cancer therapy. Progress in Natural Science: Materials International 2020;30:567-76. [DOI: 10.1016/j.pnsc.2020.09.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
713 Fu S, Yang R, Zhang L, Liu W, Du G, Cao Y, Xu Z, Cui H, Kang Y, Xue P. Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy. Biomaterials 2020;257:120279. [DOI: 10.1016/j.biomaterials.2020.120279] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 23.0] [Reference Citation Analysis]
714 Cai W, Zhou Z, Tan X, Wang W, Lv W, Chen H, Zhao Q, Yao Y. Magnetic iron phosphide particles mediated peroxymonosulfate activation for highly efficient elimination of sulfonamide antibiotics. Chemical Engineering Journal 2020;397:125279. [DOI: 10.1016/j.cej.2020.125279] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
715 Dong L, Li K, Wen D, Gao X, Feng J, Zhang H. Engineering Gadolinium-Integrated Tellurium Nanorods for Theory-Oriented Photonic Hyperthermia in the NIR-II Biowindow. Small 2020;16:e2003508. [PMID: 32985135 DOI: 10.1002/smll.202003508] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
716 Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2021;41:342-94. [PMID: 32981100 DOI: 10.1002/med.21734] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 24.5] [Reference Citation Analysis]
717 Dong S, Dong Y, Jia T, Zhang F, Wang Z, Feng L, Sun Q, Gai S, Yang P. Sequential Catalytic, Magnetic Targeting Nanoplatform for Synergistic Photothermal and NIR-Enhanced Chemodynamic Therapy. Chem Mater 2020;32:9868-81. [DOI: 10.1021/acs.chemmater.9b05170] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 18.0] [Reference Citation Analysis]
718 Zheng K, Xie J. Composition-Dependent Antimicrobial Ability of Full-Spectrum AuxAg25-x Alloy Nanoclusters. ACS Nano 2020;14:11533-41. [PMID: 32794730 DOI: 10.1021/acsnano.0c03975] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 21.5] [Reference Citation Analysis]
719 Zhu J, Xiao T, Zhang J, Che H, Shi Y, Shi X, van Hest JCM. Surface-Charge-Switchable Nanoclusters for Magnetic Resonance Imaging-Guided and Glutathione Depletion-Enhanced Photodynamic Therapy. ACS Nano 2020;14:11225-37. [PMID: 32809803 DOI: 10.1021/acsnano.0c03080] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 24.0] [Reference Citation Analysis]
720 Feng L, Dou C, Xia Y, Li B, Zhao M, El‐toni AM, Atta NF, Zheng Y, Cai X, Wang Y, Cheng Y, Zhang F. Enhancement of Nanozyme Permeation by Endovascular Interventional Treatment to Prevent Vascular Restenosis via Macrophage Polarization Modulation. Adv Funct Mater 2020;30:2006581. [DOI: 10.1002/adfm.202006581] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
721 Jian X, Xu J, Yang L, Zhao C, Xu J, Gao Z, Song YY. Intracellular Metal-Organic Frameworks: Integrating an All-In-One Semiconductor Electrode Chip for Therapy, Capture, and Quantification of Circulating Tumor Cells. Anal Chem 2020;92:13319-26. [PMID: 32897047 DOI: 10.1021/acs.analchem.0c02618] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
722 Yang B, Shi J. Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angew Chem Int Ed 2020;59:21829-38. [DOI: 10.1002/anie.202004317] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
723 Croissant JG, Butler KS, Zink JI, Brinker CJ. Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nat Rev Mater 2020;5:886-909. [DOI: 10.1038/s41578-020-0230-0] [Cited by in Crossref: 88] [Cited by in F6Publishing: 93] [Article Influence: 44.0] [Reference Citation Analysis]
724 Dehvari K, Chiu SH, Lin JS, Girma WM, Ling YC, Chang JY. Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomater 2020;114:343-57. [PMID: 32682058 DOI: 10.1016/j.actbio.2020.07.022] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
725 Lee JS, Song IH, Shinde PB, Nimse SB. Macrocycles and Supramolecules as Antioxidants: Excellent Scaffolds for Development of Potential Therapeutic Agents. Antioxidants (Basel) 2020;9:E859. [PMID: 32937775 DOI: 10.3390/antiox9090859] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
726 Zuo J, Huo M, Wang L, Li J, Chen Y, Xiong P. Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. J Mater Chem B 2020. [PMID: 32926057 DOI: 10.1039/d0tb01089h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
727 Wei Z, Wang L, Tang C, Chen S, Wang Z, Wang Y, Bao J, Xie Y, Zhao W, Su B, Zhao C. Metal‐Phenolic Networks Nanoplatform to Mimic Antioxidant Defense System for Broad‐Spectrum Radical Eliminating and Endotoxemia Treatment. Adv Funct Mater 2020;30:2002234. [DOI: 10.1002/adfm.202002234] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 17.0] [Reference Citation Analysis]
728 Wang Y, Cheng Y, Wu N, Zhang Z. Graphitic Carbon Nitride/Poly(3-hexylthiophene) Nanocomposites for the Photoelectrochemical Detection of H 2 O 2 in Living Cells. ACS Appl Nano Mater 2020;3:8598-603. [DOI: 10.1021/acsanm.0c02114] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
729 Ma Y, Yan C, Guo Z, Tan G, Niu D, Li Y, Zhu W. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem Int Ed 2020;59:21143-50. [DOI: 10.1002/anie.202009380] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
730 Ma Y, Yan C, Guo Z, Tan G, Niu D, Li Y, Zhu W. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem 2020;132:21329-36. [DOI: 10.1002/ange.202009380] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
731 Cao Z, Luo Y, Li Z, Tan L, Liu X, Li C, Zheng Y, Cui Z, Yeung KWK, Liang Y, Zhu S, Wu S. Antibacterial Hybrid Hydrogels. Macromol Biosci 2021;21:e2000252. [PMID: 32881309 DOI: 10.1002/mabi.202000252] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
732 Zhou Z, Wu H, Yang R, Xu A, Zhang Q, Dong J, Qian C, Sun M. GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer. Sci Adv 2020;6:eabc4373. [PMID: 32917602 DOI: 10.1126/sciadv.abc4373] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 38.0] [Reference Citation Analysis]
733 Liu N, Zhu M, Niu N, Ren J, Yang N, Yu C. Aza-BODIPY Probe-Decorated Mesoporous Black TiO2 Nanoplatform for the Highly Efficient Synergistic Phototherapy. ACS Appl Mater Interfaces 2020;12:41071-8. [PMID: 32806896 DOI: 10.1021/acsami.0c10531] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
734 Lu X, Gao S, Lin H, Yu L, Han Y, Zhu P, Bao W, Yao H, Chen Y, Shi J. Bioinspired Copper Single-Atom Catalysts for Tumor Parallel Catalytic Therapy. Adv Mater 2020;32:e2002246. [PMID: 32705751 DOI: 10.1002/adma.202002246] [Cited by in Crossref: 94] [Cited by in F6Publishing: 100] [Article Influence: 47.0] [Reference Citation Analysis]
735 Wang H, Zhang M, Ma Y, Wang B, Huang H, Liu Y, Shao M, Kang Z. Carbon Dots Derived from Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages. ACS Appl Mater Interfaces 2020;12:41088-95. [PMID: 32805964 DOI: 10.1021/acsami.0c11735] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 16.5] [Reference Citation Analysis]
736 Lu C, Zhang C, Wang P, Zhao Y, Yang Y, Wang Y, Yuan H, Qu S, Zhang X, Song G, Pu K. Light-free Generation of Singlet Oxygen through Manganese-Thiophene Nanosystems for pH-Responsive Chemiluminescence Imaging and Tumor Therapy. Chem 2020;6:2314-34. [DOI: 10.1016/j.chempr.2020.06.024] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 32.5] [Reference Citation Analysis]
737 Liu J, Zhang J, Huang F, Deng Y, Li B, Ouyang R, Miao Y, Sun Y, Li Y. X-ray and NIR light dual-triggered mesoporous upconversion nanophosphor/Bi heterojunction radiosensitizer for highly efficient tumor ablation. Acta Biomater 2020;113:570-83. [PMID: 32629190 DOI: 10.1016/j.actbio.2020.06.044] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
738 Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, Sun Z, Yan S, Mao Z, Wang W. A Nanomedicine Fabricated from Gold Nanoparticles-Decorated Metal-Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. Adv Sci (Weinh) 2020;7:2001060. [PMID: 32995124 DOI: 10.1002/advs.202001060] [Cited by in Crossref: 62] [Cited by in F6Publishing: 70] [Article Influence: 31.0] [Reference Citation Analysis]
739 Yang B, Shi J. Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Adv Sci (Weinh) 2020;7:2001388. [PMID: 32999845 DOI: 10.1002/advs.202001388] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
740 Yang Y, Liu Z. Chemiluminescent Nanosystems for Imaging Cancer Chemodynamic Therapy. Chem 2020;6:2127-9. [DOI: 10.1016/j.chempr.2020.08.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
741 Sun D, Zhang Z, Chen M, Zhang Y, Amagat J, Kang S, Zheng Y, Hu B, Chen M. Co-Immobilization of Ce6 Sono/Photosensitizer and Protonated Graphitic Carbon Nitride on PCL/Gelation Fibrous Scaffolds for Combined Sono-Photodynamic Cancer Therapy. ACS Appl Mater Interfaces 2020;12:40728-39. [PMID: 32794726 DOI: 10.1021/acsami.0c08446] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
742 Xu J, Shi R, Chen G, Dong S, Yang P, Zhang Z, Niu N, Gai S, He F, Fu Y, Lin J. All-in-One Theranostic Nanomedicine with Ultrabright Second Near-Infrared Emission for Tumor-Modulated Bioimaging and Chemodynamic/Photodynamic Therapy. ACS Nano 2020;14:9613-25. [PMID: 32806021 DOI: 10.1021/acsnano.0c00082] [Cited by in Crossref: 119] [Cited by in F6Publishing: 104] [Article Influence: 59.5] [Reference Citation Analysis]
743 Tong X, Zhang L, Li L, Li Y, Yang Z, Zhu D, Xie Z. Water-soluble cyclometalated Ir(III) complexes as carrier-free and pure nanoparticle photosensitizers for photodynamic therapy and cell imaging. Dalton Trans 2020;49:11493-7. [PMID: 32789382 DOI: 10.1039/d0dt02584d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
744 Dong L, Li W, Yu L, Sun L, Chen Y, Hong G. Ultrasmall Ag 2 Te Quantum Dots with Rapid Clearance for Amplified Computed Tomography Imaging and Augmented Photonic Tumor Hyperthermia. ACS Appl Mater Interfaces 2020;12:42558-66. [DOI: 10.1021/acsami.0c12948] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
745 Liu C, Du Z, Ma M, Sun Y, Ren J, Qu X. Carbon Monoxide Controllable Targeted Gas Therapy for Synergistic Anti-inflammation. iScience 2020;23:101483. [PMID: 32891060 DOI: 10.1016/j.isci.2020.101483] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
746 Gao Y, Yu G, Xing K, Gorin D, Kotelevtsev Y, Tong W, Mao Z. Finely tuned Prussian blue-based nanoparticles and their application in disease treatment. J Mater Chem B 2020;8:7121-34. [PMID: 32648878 DOI: 10.1039/d0tb01248c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
747 Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
748 Le Z, Liu Z, Sun L, Liu L, Chen Y. Augmenting Therapeutic Potential of Polyphenols by Hydrogen-Bonding Complexation for the Treatment of Acute Lung Inflammation. ACS Appl Bio Mater 2020;3:5202-12. [PMID: 35021695 DOI: 10.1021/acsabm.0c00616] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
749 Liu Q, Yuan Z, Guo X, Esch JH. Dual‐Functionalized Crescent Microgels for Selectively Capturing and Killing Cancer Cells. Angew Chem 2020;132:14180-14184. [DOI: 10.1002/ange.202005034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
750 Beri D, Jakoby M, Busko D, Richards BS, Turshatov A. Enhancing Singlet Oxygen Generation in Conjugates of Silicon Nanocrystals and Organic Photosensitizers. Front Chem 2020;8:567. [PMID: 32766208 DOI: 10.3389/fchem.2020.00567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
751 M V A, Harb M, Sundaram R. Synthesis and characterization of cellulose/TiO2 nanocomposite: Evaluation of in vitro antibacterial and in silico molecular docking studies. Carbohydr Polym 2020;249:116868. [PMID: 32933693 DOI: 10.1016/j.carbpol.2020.116868] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
752 Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-Based Theranostic Nanoplatform for Improving Chemodynamic Therapy of Cancer. ACS Biomater Sci Eng 2020;6:4834-45. [DOI: 10.1021/acsbiomaterials.0c01009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 14.5] [Reference Citation Analysis]
753 Han SI, Lee SW, Cho MG, Yoo JM, Oh MH, Jeong B, Kim D, Park OK, Kim J, Namkoong E, Jo J, Lee N, Lim C, Soh M, Sung YE, Yoo J, Park K, Hyeon T. Epitaxially Strained CeO2 /Mn3 O4 Nanocrystals as an Enhanced Antioxidant for Radioprotection. Adv Mater 2020;32:e2001566. [PMID: 32520432 DOI: 10.1002/adma.202001566] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
754 Zhang Y, Xu C, Yang X, Pu K. Photoactivatable Protherapeutic Nanomedicine for Cancer. Adv Mater 2020;32:e2002661. [PMID: 32667701 DOI: 10.1002/adma.202002661] [Cited by in Crossref: 113] [Cited by in F6Publishing: 119] [Article Influence: 56.5] [Reference Citation Analysis]
755 Deng Y, Feng S, Xia Q, Gong S, Feng G. A novel reaction-based fluorescence probe for rapid imaging of HClO in live cells, animals, and injured liver tissues. Talanta 2020;215:120901. [DOI: 10.1016/j.talanta.2020.120901] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
756 Wang C, Zhang Z. Transition‐Metal Phosphide/Sulfide Nanocomposites for Effective Electrochemical Non‐Enzymatic Detection of Hydrogen Peroxide. ChemElectroChem 2020;7:3416-9. [DOI: 10.1002/celc.202000867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
757 Gao B, Haghighatbin MA, Cui H. Polymer-Encapsulated Cobalt/Gold Bimetallic Nanoclusters as Stimuli-Responsive Chemiluminescent Nanoprobes for Reactive Oxygen Species. Anal Chem 2020;92:10677-85. [PMID: 32660237 DOI: 10.1021/acs.analchem.0c01779] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
758 Hu B, Lian Z, Zhou Z, Shi L, Yu Z. Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS Appl Bio Mater 2020;3:5529-51. [DOI: 10.1021/acsabm.0c00758] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
759 Liang C, Zhang X, Cheng Z, Yang M, Huang W, Dong X. Magnetic iron oxide nanomaterials: A key player in cancer nanomedicine. View 2020;1:20200046. [DOI: 10.1002/viw.20200046] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
760 Xiang H, Chen Y. Materdicine: Interdiscipline of materials and medicine. View 2020;1:20200016. [DOI: 10.1002/viw.20200016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
761 Zhou J, Shi L, Liu Q, Zhang H, Liu X, Han F, Guo Z, Lu X, Wang J. Porous Lanthanum‐Doped Manganese Oxide Nanoparticles for Enhanced Sonodynamic Cancer Therapy. Part Part Syst Charact 2020;37:2000143. [DOI: 10.1002/ppsc.202000143] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
762 Liu X, Zhang M, Yan D, Deng G, Wang Q, Li C, Zhao L, Lu J. A smart theranostic agent based on Fe-HPPy@Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy. Biomater Sci 2020;8:4067-72. [PMID: 32648564 DOI: 10.1039/d0bm00623h] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
763 Pang X, Li D, Zhu J, Cheng J, Liu G. Beyond Antibiotics: Photo/Sonodynamic Approaches for Bacterial Theranostics. Nanomicro Lett 2020;12:144. [PMID: 34138184 DOI: 10.1007/s40820-020-00485-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
764 Liang Y, Zeng D, You Y, Ma B, Li X, Chen T. Designing Dihydrofolate Reductase Inhibitors as X-ray Radiosensitizers to Reverse Radioresistance of Cervical Cancer. ACS Med Chem Lett 2020;11:1421-8. [PMID: 32676149 DOI: 10.1021/acsmedchemlett.0c00105] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
765 Zhou X, Zhao W, Wang M, Zhang S, Li Y, Hu W, Ren L, Luo S, Chen Z. Dual-Modal Therapeutic Role of the Lactate Oxidase-Embedded Hierarchical Porous Zeolitic Imidazolate Framework as a Nanocatalyst for Effective Tumor Suppression. ACS Appl Mater Interfaces 2020;12:32278-88. [PMID: 32580547 DOI: 10.1021/acsami.0c05783] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 12.5] [Reference Citation Analysis]
766 Teng Y, Li M, Huang X, Ren J. Singlet Oxygen Generation in Ferriporphyrin-Polymer Dots Catalyzed Chemiluminescence System for Cancer Therapy. ACS Appl Bio Mater 2020;3:5020-9. [DOI: 10.1021/acsabm.0c00522] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
767 Liao G, He F, Li Q, Zhong L, Zhao R, Che H, Gao H, Fang B. Emerging graphitic carbon nitride-based materials for biomedical applications. Progress in Materials Science 2020;112:100666. [DOI: 10.1016/j.pmatsci.2020.100666] [Cited by in Crossref: 118] [Cited by in F6Publishing: 129] [Article Influence: 59.0] [Reference Citation Analysis]
768 Chen B, Xiang H, Pan S, Yu L, Xu T, Chen Y. Advanced Theragenerative Biomaterials with Therapeutic and Regeneration Multifunctionality. Adv Funct Materials 2020;30:2002621. [DOI: 10.1002/adfm.202002621] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
769 Qu Z. Reactivities of singlet oxygen: open-shell or closed-shell? Phys Chem Chem Phys 2020;22:13373-7. [PMID: 32538393 DOI: 10.1039/d0cp02466j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
770 Li H, Zou Y, Jiang J. Synthesis of Ag@CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation. Dalton Trans 2020;49:9274-81. [PMID: 32572419 DOI: 10.1039/d0dt01816c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
771 Feng Z, Guo J, Liu X, Song H, Zhang C, Huang P, Dong A, Kong D, Wang W. Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials 2020;255:120210. [PMID: 32592871 DOI: 10.1016/j.biomaterials.2020.120210] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 20.5] [Reference Citation Analysis]
772 Sun D, Qi G, Ma K, Qu X, Xu W, Xu S, Jin Y. Tumor Microenvironment-Activated Degradable Multifunctional Nanoreactor for Synergistic Cancer Therapy and Glucose SERS Feedback. iScience 2020;23:101274. [PMID: 32615471 DOI: 10.1016/j.isci.2020.101274] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
773 Du Y, Yang C, Li F, Liao H, Chen Z, Lin P, Wang N, Zhou Y, Lee JY, Ding Q, Ling D. Core–Shell–Satellite Nanomaces as Remotely Controlled Self‐Fueling Fenton Reagents for Imaging‐Guided Triple‐Negative Breast Cancer‐Specific Therapy. Small 2020;16:2002537. [DOI: 10.1002/smll.202002537] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
774 El Nahrawy AM, Bakr AM, Hemdan BA, Abou Hammad AB. Identification of Fe3+ co-doped zinc titanate mesostructures using dielectric and antimicrobial activities. Int J Environ Sci Technol 2020;17:4481-94. [DOI: 10.1007/s13762-020-02786-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
775 Chen D, Zhong Z, Ma Q, Shao J, Huang W, Dong X. Aza-BODIPY-Based Nanomedicines in Cancer Phototheranostics. ACS Appl Mater Interfaces 2020;12:26914-25. [PMID: 32463220 DOI: 10.1021/acsami.0c05021] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 32.0] [Reference Citation Analysis]
776 Ankireddy SR, Vo VG, An SSA, Kim J. Solvent-Free Synthesis of Fluorescent Carbon Dots: An Ecofriendly Approach for the Bioimaging and Screening of Anticancer Activity via Caspase-Induced Apoptosis. ACS Appl Bio Mater 2020;3:4873-82. [DOI: 10.1021/acsabm.0c00377] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
777 Liu Q, Yuan Z, Guo X, van Esch JH. Dual-Functionalized Crescent Microgels for Selectively Capturing and Killing Cancer Cells. Angew Chem Int Ed Engl 2020;59:14076-80. [PMID: 32395894 DOI: 10.1002/anie.202005034] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
778 Chen Z, Vong CT, Gao C, Chen S, Wu X, Wang S, Wang Y. Bilirubin Nanomedicines for the Treatment of Reactive Oxygen Species (ROS)-Mediated Diseases. Mol Pharm 2020;17:2260-74. [PMID: 32433886 DOI: 10.1021/acs.molpharmaceut.0c00337] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 13.5] [Reference Citation Analysis]
779 Baride A, Hawkinson D, Engebretson D, Stanley May P. One- and two-photon electron-transfer induced uncaging of coumarin from cinnamate-capped CdSe quantum dots. Journal of Luminescence 2020;222:117112. [DOI: 10.1016/j.jlumin.2020.117112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
780 Zhou K, Qiu X, Xu L, Li G, Rao B, Guo B, Pei D, Li A, He G. Poly(selenoviologen)-Assembled Upconversion Nanoparticles for Low-Power Single-NIR Light-Triggered Synergistic Photodynamic and Photothermal Antibacterial Therapy. ACS Appl Mater Interfaces 2020;12:26432-43. [PMID: 32429664 DOI: 10.1021/acsami.0c04506] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
781 Liu L, Bao Y, Wang J, Xiao C, Chen L. Construction of carrier-free porphyrin-based drug self-framed delivery system to reverse multidrug resistance through photodynamic-chemotherapy. Dyes and Pigments 2020;177:107922. [DOI: 10.1016/j.dyepig.2019.107922] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
782 Huo M, Wang L, Chen Y, Shi J. Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today 2020;32:100854. [DOI: 10.1016/j.nantod.2020.100854] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
783 Wang Y, Wu W, Mao D, Teh C, Wang B, Liu B. Metal–Organic Framework Assisted and Tumor Microenvironment Modulated Synergistic Image‐Guided Photo‐Chemo Therapy. Adv Funct Mater 2020;30:2002431. [DOI: 10.1002/adfm.202002431] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 21.0] [Reference Citation Analysis]
784 Gu T, Chen T, Cheng L, Li X, Han G, Liu Z. Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. Nano Res 2020;13:2209-15. [DOI: 10.1007/s12274-020-2838-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
785 Jing L, Yang C, Zhang P, Zeng J, Li Z, Gao M. Nanoparticles weaponized with built‐in functions for imaging‐guided cancer therapy. View 2020;1. [DOI: 10.1002/viw2.19] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
786 Zhao Y, Wang J, Cai X, Ding P, Lv H, Pei R. Metal-Organic Frameworks with Enhanced Photodynamic Therapy: Synthesis, Erythrocyte Membrane Camouflage, and Aptamer-Targeted Aggregation. ACS Appl Mater Interfaces 2020;12:23697-706. [PMID: 32362109 DOI: 10.1021/acsami.0c04363] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 27.0] [Reference Citation Analysis]
787 Olson RA, Korpusik AB, Sumerlin BS. Enlightening advances in polymer bioconjugate chemistry: light-based techniques for grafting to and from biomacromolecules. Chem Sci 2020;11:5142-56. [PMID: 34122971 DOI: 10.1039/d0sc01544j] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 19.0] [Reference Citation Analysis]
788 Huo M, Wang L, Chen Y, Shi J. Oxygen Pathology and Oxygen-Functional Materials for Therapeutics. Matter 2020;2:1115-47. [DOI: 10.1016/j.matt.2020.02.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
789 Yang Y, Ding Y, Fan B, Wang Y, Mao Z, Wang W, Wu J. Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. Journal of Controlled Release 2020;321:463-74. [DOI: 10.1016/j.jconrel.2020.02.030] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 17.0] [Reference Citation Analysis]
790 Zhang G, Li Z, Chen F, Zhang D, Ji W, Yang Z, Wu Q, Zhang C, Li L, Huang W. A novel fluorogenic probe for visualizing the hydrogen peroxide in Parkinson’s disease models. J Innov Opt Health Sci 2020;13:2050013. [DOI: 10.1142/s1793545820500133] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
791 Mao CC, Cai X. Nanomaterials and Aging. Curr Stem Cell Res Ther 2021;16:57-65. [PMID: 32321409 DOI: 10.2174/1574888X15666200422103916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
792 Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. Small 2020;16:e1907322. [PMID: 32329572 DOI: 10.1002/smll.201907322] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 22.5] [Reference Citation Analysis]
793 Deng Z, Fang C, Ma X, Li X, Zeng Y, Peng X. One Stone Two Birds: Zr-Fc Metal–Organic Framework Nanosheet for Synergistic Photothermal and Chemodynamic Cancer Therapy. ACS Appl Mater Interfaces 2020;12:20321-30. [DOI: 10.1021/acsami.0c06648] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 32.0] [Reference Citation Analysis]
794 Wu L, Liu G, Wang W, Liu R, Liao L, Cheng N, Li W, Zhang W, Ding D. Cyclodextrin-Modified CeO2 Nanoparticles as a Multifunctional Nanozyme for Combinational Therapy of Psoriasis. Int J Nanomedicine 2020;15:2515-27. [PMID: 32368038 DOI: 10.2147/IJN.S246783] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
795 Alenazi MM, Shafiq M, Alsadon AA, Alhelal IM, Alhamdan AM, Solieman THI, Ibrahim AA, Shady MR, Al-Selwey WA. Improved functional and nutritional properties of tomato fruit during cold storage. Saudi J Biol Sci 2020;27:1467-74. [PMID: 32489282 DOI: 10.1016/j.sjbs.2020.03.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
796 Liu C, Cao Y, Cheng Y, Wang D, Xu T, Su L, Zhang X, Dong H. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat Commun 2020;11:1735. [PMID: 32269223 DOI: 10.1038/s41467-020-15591-4] [Cited by in Crossref: 186] [Cited by in F6Publishing: 196] [Article Influence: 93.0] [Reference Citation Analysis]
797 Zhang X, Li G, Liu Z, Liu Z, Jiang J. Iminoboronate Backbone‐Based Hyperbranched Polymeric Micelles with Fenton‐Like Enhanced ROS Response. Macromol Chem Phys 2020;221:2000022. [DOI: 10.1002/macp.202000022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
798 Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, He F, Gai S, Yang P. Fusiform-Like Copper(II)-Based Metal-Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Therapy. ACS Appl Mater Interfaces 2020;12:17254-67