BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schramm VL. Enzymatic Transition States and Drug Design. Chem Rev 2018;118:11194-258. [PMID: 30335982 DOI: 10.1021/acs.chemrev.8b00369] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Fukuzumi S, Lee Y, Nam W. Deuterium kinetic isotope effects as redox mechanistic criterions. Bull Korean Chem Soc 2021;42:1558-68. [DOI: 10.1002/bkcs.12417] [Reference Citation Analysis]
2 Khrenova MG, Krivitskaya AV, Tsirelson VG. The QM/MM-QTAIM approach reveals the nature of the different reactivity of cephalosporins in the active site of L1 metallo-β-lactamase. New J Chem 2019;43:7329-38. [DOI: 10.1039/c9nj00254e] [Cited by in Crossref: 17] [Article Influence: 5.7] [Reference Citation Analysis]
3 Paparella AS, Aboulache BL, Harijan RK, Potts KS, Tyler PC, Schramm VL. Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues. Nat Commun 2021;12:6285. [PMID: 34725358 DOI: 10.1038/s41467-021-26580-6] [Reference Citation Analysis]
4 Wang J, Cao Z, Wang F, Wang P, An J, Fu X, Liu T, Li Y, Li Y, Zhao Y, Lin H, He B. Cysteine derivatives as acetyl lysine mimics to inhibit zinc-dependent histone deacetylases for treating cancer. Eur J Med Chem 2021;225:113799. [PMID: 34500130 DOI: 10.1016/j.ejmech.2021.113799] [Reference Citation Analysis]
5 Richard JP, Cristobal JR, Amyes TL. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe. Acc Chem Res 2021;54:2532-42. [PMID: 33939414 DOI: 10.1021/acs.accounts.1c00147] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Decultot L, Policarpo RL, Wright BA, Huang D, Shair MD. Asymmetric Total Synthesis of C9'-epi-Sinefungin. Org Lett 2020;22:5594-9. [PMID: 32628491 DOI: 10.1021/acs.orglett.0c01956] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Remington JM, McKay KT, Ferrell JB, Schneebeli ST, Li J. Enhanced sampling protocol to elucidate fusion peptide opening of SARS-CoV-2 spike protein. Biophys J 2021;120:2848-58. [PMID: 34087207 DOI: 10.1016/j.bpj.2021.05.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Ortet PC, Muellers SN, Viarengo-baker LA, Streu K, Szymczyna BR, Beeler AB, Allen KN, Whitty A. Recapitulating the Binding Affinity of Nrf2 for KEAP1 in a Cyclic Heptapeptide, Guided by NMR, X-ray Crystallography, and Machine Learning. J Am Chem Soc 2021;143:3779-93. [DOI: 10.1021/jacs.0c09799] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021;50:5952-84. [PMID: 34027955 DOI: 10.1039/d0cs00540a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zenchenko AA, Drenichev MS, Il'icheva IA, Mikhailov SN. Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action. Mol Biol 2021;55:786-812. [PMID: 34955556 DOI: 10.1134/S0026893321040105] [Reference Citation Analysis]
11 Agarwal PK, Bernard DN, Bafna K, Doucet N. Enzyme dynamics: Looking beyond a single structure. ChemCatChem 2020;12:4704-20. [PMID: 33897908 DOI: 10.1002/cctc.202000665] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 Rezende JDP, De Paula HMC, Freitas TD, Coelho YL, Da Silva LHM, Pires ACDS. Application of Congo red dye as a molecular probe to investigate the kinetics and thermodynamics of the formation processes of arachin and conarachin nanocomplexes. Food Chemistry 2022;384:132485. [DOI: 10.1016/j.foodchem.2022.132485] [Reference Citation Analysis]
13 Magalhães RP, Fernandes HS, Sousa SF. Modelling Enzymatic Mechanisms with QM/MM Approaches: Current Status and Future Challenges. Isr J Chem 2020;60:655-66. [DOI: 10.1002/ijch.202000014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
14 Mahmoodi N, Harijan RK, Schramm VL. Transition-State Analogues of Phenylethanolamine N-Methyltransferase. J Am Chem Soc 2020;142:14222-33. [PMID: 32702980 DOI: 10.1021/jacs.0c05446] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
15 Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020;10:6430-49. [DOI: 10.1021/acscatal.0c00983] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
16 Kelpšas V, Caldararu O, Blakeley MP, Coquelle N, Wierenga RK, Ryde U, von Wachenfeldt C, Oksanen E. Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps. IUCrJ 2021;8:633-43. [PMID: 34258011 DOI: 10.1107/S2052252521004619] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Higgins EL, Kellner-Rogers JS, Estanislau AM, Esposito AC, Vail NR, Payne SR, Stockwell JG, Ulrich SM. Design, synthesis, and evaluation of transition-state analogs as inhibitors of the bacterial quorum sensing autoinducer synthase CepI. Bioorg Med Chem Lett 2021;39:127873. [PMID: 33631369 DOI: 10.1016/j.bmcl.2021.127873] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Frydrych J, Keough DT, Chavchich M, Travis J, Dračínský M, Edstein MD, Guddat LW, Hocková D, Janeba Z. Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity. Eur J Med Chem 2021;219:113416. [PMID: 33887682 DOI: 10.1016/j.ejmech.2021.113416] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Singh AK, Das K. Insights into HIV-1 Reverse Transcriptase (RT) Inhibition and Drug Resistance from Thirty Years of Structural Studies. Viruses 2022;14:1027. [DOI: 10.3390/v14051027] [Reference Citation Analysis]
20 Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020;10:E854. [PMID: 32503337 DOI: 10.3390/biom10060854] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
21 Wei H, Wang Z, Li H. Sustainable biomass hydrodeoxygenation in biphasic systems. Green Chem . [DOI: 10.1039/d1gc03836b] [Reference Citation Analysis]
22 Minnow YVT, Harijan RK, Schramm VL. A resistant mutant of Plasmodium falciparum purine nucleoside phosphorylase uses wild-type neighbors to maintain parasite survival. J Biol Chem 2021;296:100342. [PMID: 33524395 DOI: 10.1016/j.jbc.2021.100342] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhuo MH, Wilbur DJ, Kwan EE, Bennett CS. Matching Glycosyl Donor Reactivity to Sulfonate Leaving Group Ability Permits SN2 Glycosylations. J Am Chem Soc 2019;141:16743-54. [PMID: 31550879 DOI: 10.1021/jacs.9b07022] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
24 Ivkovic J, Jha S, Lembacher-Fadum C, Puschnig J, Kumar P, Reithofer V, Gruber K, Macheroux P, Breinbauer R. Efficient Entropy-Driven Inhibition of Dipeptidyl Peptidase III by Hydroxyethylene Transition-State Peptidomimetics. Chemistry 2021;27:14108-20. [PMID: 34314529 DOI: 10.1002/chem.202102204] [Reference Citation Analysis]
25 Singh AK, Martinez SE, Gu W, Nguyen H, Schols D, Herdewijn P, De Jonghe S, Das K. Sliding of HIV-1 reverse transcriptase over DNA creates a transient P pocket - targeting P-pocket by fragment screening. Nat Commun 2021;12:7127. [PMID: 34880240 DOI: 10.1038/s41467-021-27409-y] [Reference Citation Analysis]
26 Chen S, Kapilashrami K, Senevirathne C, Wang Z, Wang J, Linscott JA, Luo M. Substrate-Differentiated Transition States of SET7/9-Catalyzed Lysine Methylation. J Am Chem Soc 2019;141:8064-7. [PMID: 31034218 DOI: 10.1021/jacs.9b02553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Berezin V, Bogoyavlenskiy A, Alexyuk M, Alexyuk P. Plant Metabolites as Antiviral Preparations Against Coronaviruses. J Med Food 2021. [PMID: 33689397 DOI: 10.1089/jmf.2020.0190] [Reference Citation Analysis]
28 Rezende JDP, Coelho YL, de Paula HMC, da Silva LHM, Pires ACDS. Temperature modulation of lutein-lysozyme hydrophobic-hydrophilic interaction balance. Journal of Molecular Liquids 2020;316:113887. [DOI: 10.1016/j.molliq.2020.113887] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]