BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Cited by in Crossref: 41] [Cited by in F6Publishing: 51] [Article Influence: 20.5] [Reference Citation Analysis]
Number Citing Articles
1 Ji C, Wang X, Xue B, Li S, Li J, Qiao B, Du J, Yin M, Wang Y. A fluorescent nano vector for early diagnosis and enhanced Interleukin-33 therapy of thoracic aortic dissection. Biomaterials 2023;293:121958. [PMID: 36566550 DOI: 10.1016/j.biomaterials.2022.121958] [Reference Citation Analysis]
2 Patel RA, Webb MA. Data-Driven Design of Polymer-Based Biomaterials: High-throughput Simulation, Experimentation, and Machine Learning. ACS Appl Bio Mater 2023. [PMID: 36701125 DOI: 10.1021/acsabm.2c00962] [Reference Citation Analysis]
3 Casper J, Nicolle L, Willimann M, Kuzucu EÜ, Tran A, Robin P, Detampel P, Grisch-Chan HM, Thöny B, Huwyler J, Gerber-Lemaire S. Core-Shell Structured Chitosan-Polyethylenimine Nanoparticles for Gene Delivery: Improved Stability, Cellular Uptake, and Transfection Efficiency. Macromol Biosci 2023;23:e2200314. [PMID: 36200651 DOI: 10.1002/mabi.202200314] [Reference Citation Analysis]
4 Lin Y, Wilk U, Pöhmerer J, Hörterer E, Höhn M, Luo X, Mai H, Wagner E, Lächelt U. Folate Receptor-Mediated Delivery of Cas9 RNP for Enhanced Immune Checkpoint Disruption in Cancer Cells. Small 2023;19:e2205318. [PMID: 36399647 DOI: 10.1002/smll.202205318] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Heo T, Hoang QT, Cao TGN, Oh S, Ryu M, Shim MS, Choi S. Guanidinium-functionalized Block Copolyelectrolyte Micelleplexes for Safe and Efficient siRNA Delivery. Biotechnol Bioproc E 2022. [DOI: 10.1007/s12257-022-0222-6] [Reference Citation Analysis]
6 Dalal RJ, Ohnsorg ML, Panda S, Reineke TM. Hydrophilic Surface Modification of Cationic Unimolecular Bottlebrush Vectors Moderate pDNA and RNP Bottleplex Stability and Delivery Efficacy. Biomacromolecules 2022;23:5179-92. [PMID: 36445696 DOI: 10.1021/acs.biomac.2c00999] [Reference Citation Analysis]
7 Hamelmann NM, Uijttewaal S, Hujaya SD, Paulusse JMJ. Enhancing Cellular Internalization of Single-Chain Polymer Nanoparticles via Polyplex Formation. Biomacromolecules 2022;23:5036-42. [PMID: 36383472 DOI: 10.1021/acs.biomac.2c00858] [Reference Citation Analysis]
8 Li G, Zhang Y, Li J. A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy. Ultrason Sonochem 2023;92:106262. [PMID: 36512940 DOI: 10.1016/j.ultsonch.2022.106262] [Reference Citation Analysis]
9 Park Y, Moses AS, Demessie AA, Singh P, Lee H, Korzun T, Taratula OR, Alani AWG, Taratula O. Poly(aspartic acid)-Based Polymeric Nanoparticle for Local and Systemic mRNA Delivery. Mol Pharm 2022;19:4696-704. [PMID: 36409995 DOI: 10.1021/acs.molpharmaceut.2c00738] [Reference Citation Analysis]
10 Shaputkin ED, Nifant'ev IE, Bagrov VV, Shlyakhtin AV, Abashkin DA, Galiakberova AA, Ivchenko PV. Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency. European Polymer Journal 2022;181:111644. [DOI: 10.1016/j.eurpolymj.2022.111644] [Reference Citation Analysis]
11 Song H, Ji Y, Zhu Y, Xia J, Hu C, Jin Y, Zhang J, Hu Z, Dai J. One-pot synthesized nano-heterostructure with dual-modal catalytic ROS generation ability for high-metastatic orthotopic osteosarcoma therapy. Carbon 2022. [DOI: 10.1016/j.carbon.2022.12.053] [Reference Citation Analysis]
12 Fortenberry A, Mohammad SA, Werfel TA, Smith AE. Comparative Investigation of the Hydrolysis of Charge-Shifting Polymers Derived from an Azlactone-Based Polymer. Macromol Rapid Commun 2022;43:e2200420. [PMID: 35820157 DOI: 10.1002/marc.202200420] [Reference Citation Analysis]
13 Shofolawe-Bakare OT, de Mel JU, Mishra SK, Hossain M, Hamadani CM, Pride MC, Dasanayake GS, Monroe W, Roth EW, Tanner EEL, Doerksen RJ, Smith AE, Werfel TA. ROS-Responsive Glycopolymeric Nanoparticles for Enhanced Drug Delivery to Macrophages. Macromol Biosci 2022;22:e2200281. [PMID: 36125638 DOI: 10.1002/mabi.202200281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Hanson MG, Grimme CJ, Santa Chalarca CF, Reineke TM. Cationic Micelles Outperform Linear Polymers for Delivery of Antisense Oligonucleotides in Serum: An Exploration of Polymer Architecture, Cationic Moieties, and Cell Addition Order. Bioconjug Chem 2022;33:2121-31. [PMID: 36265078 DOI: 10.1021/acs.bioconjchem.2c00379] [Reference Citation Analysis]
15 Zhao P, Tian Y, You J, Hu X, Liu Y. Recent Advances of Calcium Carbonate Nanoparticles for Biomedical Applications. Bioengineering 2022;9:691. [DOI: 10.3390/bioengineering9110691] [Reference Citation Analysis]
16 Gao Y, Song Z, Jia L, Tang Y, Wang C, Zhao X, Hu H, Chen D, Qiao M. Self-amplified ROS production from fatty acid oxidation enhanced tumor immunotherapy by atorvastatin/PD-L1 siRNA lipopeptide nanoplexes. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121902] [Reference Citation Analysis]
17 Honda Y, Onodera S, Takemoto H, Harun NFC, Nomoto T, Matsui M, Tomoda K, Sun Y, Miura Y, Nishiyama N. Thermo-Responsive Polymer-siRNA Conjugates Enabling Artificial Control of Gene Silencing around Body Temperature. Pharm Res 2022. [DOI: 10.1007/s11095-022-03414-8] [Reference Citation Analysis]
18 Mustafa R, Fitian M, Hamilton NB, Li J, Silva WR, Punihaole D. Molecular Insights into the Binding of Linear Polyethylenimines and Single-Stranded DNA Using Raman Spectroscopy: A Quantitative Approach. J Phys Chem B 2022;126:8404-14. [PMID: 36222425 DOI: 10.1021/acs.jpcb.2c04939] [Reference Citation Analysis]
19 Street STG, Chrenek J, Harniman RL, Letwin K, Mantell JM, Borucu U, Willerth SM, Manners I. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. J Am Chem Soc 2022. [PMID: 36260789 DOI: 10.1021/jacs.2c06695] [Reference Citation Analysis]
20 Zhou L, Emenuga M, Kumar S, Lamantia Z, Figueiredo M, Emrick T. Designing Synthetic Polymers for Nucleic Acid Complexation and Delivery: From Polyplexes to Micelleplexes to Triggered Degradation. Biomacromolecules 2022. [PMID: 36125365 DOI: 10.1021/acs.biomac.2c00767] [Reference Citation Analysis]
21 Mirón-barroso S, Correia JS, Frampton AE, Lythgoe MP, Clark J, Tookman L, Ottaviani S, Castellano L, Porter AE, Georgiou TK, Krell J. Polymeric Carriers for Delivery of RNA Cancer Therapeutics. ncRNA 2022;8:58. [DOI: 10.3390/ncrna8040058] [Reference Citation Analysis]
22 Cunitz V, Stacy E, Jankoski P, Clemons T. Machine learning makes magnificent macromolecules for medicine. Matter 2022;5:2558-61. [DOI: 10.1016/j.matt.2022.07.008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Grimme CJ, Hanson MG, Corcoran LG, Reineke TM. Polycation Architecture Affects Complexation and Delivery of Short Antisense Oligonucleotides: Micelleplexes Outperform Polyplexes. Biomacromolecules 2022. [PMID: 35862267 DOI: 10.1021/acs.biomac.2c00338] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Vinciguerra D, Gelb MB, Maynard HD. Synthesis and Application of Trehalose Materials. JACS Au 2022;2:1561-87. [PMID: 35911465 DOI: 10.1021/jacsau.2c00309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Xue H, Cai G, Mao Y, Chen B, Ullah A, Chen G. Photothermally Responsive siRNA Delivery by PEGylated Poly(amido amine)s for Improved Tumor Therapy. j biomed nanotechnol 2022;18:1755-1762. [DOI: 10.1166/jbn.2022.3405] [Reference Citation Analysis]
26 Liu XY, Zhang X, Yang JB, Wu CY, Wang Q, Lu ZL, Tang Q. Multifunctional amphiphilic peptide dendrimer as nonviral gene vectors for effective cancer therapy via combined gene/photodynamic therapies. Colloids Surf B Biointerfaces 2022;217:112651. [PMID: 35759892 DOI: 10.1016/j.colsurfb.2022.112651] [Reference Citation Analysis]
27 Li X, Xu X, Huang K, Wu Y, Lin Z, Yin L. Hypoxia-Reinforced Antitumor RNA Interference Mediated by Micelleplexes with Programmed Disintegration. Acta Biomater 2022:S1742-7061(22)00326-9. [PMID: 35662669 DOI: 10.1016/j.actbio.2022.05.050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS Appl Bio Mater 2022. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Reference Citation Analysis]
29 Huang P, Deng H, Zhou Y, Chen X. The roles of polymers in mRNA delivery. Matter 2022;5:1670-99. [DOI: 10.1016/j.matt.2022.03.006] [Reference Citation Analysis]
30 Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022. [PMID: 35533054 DOI: 10.1021/acs.jmedchem.2c00024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Chen J, Zhu D, Liu X, Peng L. Amphiphilic Dendrimer Vectors for RNA Delivery: State-of-the-Art and Future Perspective. Acc Mater Res . [DOI: 10.1021/accountsmr.1c00272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022:S0168-3659(22)00207-3. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Santa Chalarca CF, Dalal RJ, Chapa A, Hanson MG, Reineke TM. Cation Bulk and pKa Modulate Diblock Polymer Micelle Binding to pDNA. ACS Macro Lett 2022;11:588-94. [PMID: 35575319 DOI: 10.1021/acsmacrolett.2c00015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Chrysostomou V, Katifelis H, Gazouli M, Dimas K, Demetzos C, Pispas S. Hydrophilic Random Cationic Copolymers as Polyplex-Formation Vectors for DNA. Materials (Basel) 2022;15:2650. [PMID: 35407982 DOI: 10.3390/ma15072650] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Zhao T, Liang C, Zhao Y, Xue X, Ma Z, Qi J, Shen H, Yang S, Zhang J, Jia Q, Du Q, Cao D, Xiang B, Zhang H, Qi X. Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01383-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Ma C, Zhu D, Lin W, Li Y, Huang Y, Zhu H, Ye M, Wang Y, Peng L, Liu X. A biodegradable amphiphilic poly(aminoester) dendrimer for safe and effective siRNA delivery. Chem Commun (Camb) 2022;58:4168-71. [PMID: 35094034 DOI: 10.1039/d1cc06655b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li BL, Zhang H, Li NB, Qian H, Leong DT. Materialistic Interfaces with Nucleic Acids: Principles and Their Impact. Adv Funct Materials. [DOI: 10.1002/adfm.202201172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Chen W, Ma Y, Liu X, Zhu D. Polyester materials for mRNA delivery. Exploration of Targeted Anti-tumor Therapy. [DOI: 10.37349/etat.2022.00075] [Reference Citation Analysis]
39 Huang Z, Xiao Y, Guo Y, Yang H, Zhao R, Zhang J, Yu X. A cyclen-based fluoropolymer as a versatile vector for gene and protein delivery. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111153] [Reference Citation Analysis]
40 Kumar R, Le N, Oviedo F, Brown ME, Reineke TM. Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery. JACS Au. [DOI: 10.1021/jacsau.1c00467] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
41 Pearson JJ, Temenoff JS. Growth Factor Immobilization Strategies for Musculoskeletal Disorders. Curr Osteoporos Rep 2022. [PMID: 35118607 DOI: 10.1007/s11914-022-00718-x] [Reference Citation Analysis]
42 Liu X, Ding F, Guo Y, Jiang K, Fu Y, Zhu L, Li M, Zhu X, Zhang C. Complexing the Pre-assembled Brush-like siRNA with Poly(β-amino ester) for Efficient Gene Silencing. ACS Appl Bio Mater 2022. [PMID: 35107256 DOI: 10.1021/acsabm.1c01182] [Reference Citation Analysis]
43 Aldeghi M, Coley CW. A graph representation of molecular ensembles for polymer property prediction. Chem Sci . [DOI: 10.1039/d2sc02839e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Qin B, Jiang M, Li X, Shi Y, Zhang J, Luo Z, Luo L, Lu Y, Liu X, Wang S, Du Y, Qiu Y, Lou Y, You J. Oxygen nanocarrier broke the hypoxia trap of solid tumors and rescued transfection efficiency for gene therapy. J Nanobiotechnology 2021;19:427. [PMID: 34922537 DOI: 10.1186/s12951-021-01144-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Yadav MR, Kumar M, Murumkar PR. Further Studies on Cationic Gemini Amphiphiles as Carriers for Gene Delivery-The Effect of Linkers in the Structure and Other Factors Affecting the Transfection Efficacy of These Amphiphiles. ACS Omega 2021;6:33370-88. [PMID: 34926887 DOI: 10.1021/acsomega.1c03667] [Reference Citation Analysis]
46 Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
47 Alazzo A, Gumus N, Gurnani P, Stolnik S, Rahman R, Spriggs K, Alexander C. Investigating histidinylated highly branched poly(lysine) for siRNA delivery. J Mater Chem B 2021. [PMID: 34852030 DOI: 10.1039/d1tb01793d] [Reference Citation Analysis]
48 Jarak I, Pereira-silva M, Santos AC, Veiga F, Cabral H, Figueiras A. Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Applied Materials Today 2021;25:101217. [DOI: 10.1016/j.apmt.2021.101217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
49 Benli-Hoppe T, Göl Öztürk Ş, Öztürk Ö, Berger S, Wagner E, Yazdi M. Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequence-Defined Components. Macromol Rapid Commun 2021;:e2100602. [PMID: 34713524 DOI: 10.1002/marc.202100602] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
50 Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021;22:4060-83. [DOI: 10.1021/acs.biomac.1c00697] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
51 Liu XY, Yang JB, Duan TT, Wu CY, Tang Q, Lu ZL, He L, Sun W. Degradable cationic polyesters via ring-opening copolymerization of valerolactones as nanocarriers for the gene delivery. Bioorg Chem 2021;116:105299. [PMID: 34454300 DOI: 10.1016/j.bioorg.2021.105299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Dalal RJ, Kumar R, Ohnsorg M, Brown M, Reineke TM. Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression. ACS Macro Lett 2021;10:886-93. [PMID: 35549207 DOI: 10.1021/acsmacrolett.1c00335] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]