BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021;121:1513-81. [DOI: 10.1021/acs.chemrev.0c00884] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 38.0] [Reference Citation Analysis]
Number Citing Articles
1 He X, Wu N, Li R, Zhang H, Zhao Y, Nie Y, Wu J. IDH2, a novel target of OGT, facilitates glucose uptake and cellular bioenergy production via NF-κB signaling to promote colorectal cancer progression. Cell Oncol 2022. [DOI: 10.1007/s13402-022-00740-2] [Reference Citation Analysis]
2 Shen Z, Tang Q, Jiao W, Shao H, Ma X. One-Pot Synthesis of 2-C-Branched Glycosyl Triazoles by Integrating 1,2-Cyclopropanated Sugar Ring-Opening Azidation and CuAAC Reaction. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c02390] [Reference Citation Analysis]
3 Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.121211] [Reference Citation Analysis]
4 Wu C, Shi S, Hou C, Luo Y, Byers S, Ma J. Design and Preparation of Novel Nitro-Oxide-Grafted Nanospheres with Enhanced Hydrogen Bonding Interaction for O-GlcNAc Analysis. ACS Appl Mater Interfaces 2022. [PMID: 36240223 DOI: 10.1021/acsami.2c15039] [Reference Citation Analysis]
5 Li W, Hou C, Li Y, Wu C, Ma J. HexNAcQuest: A Tool to Distinguish O-GlcNAc and O-GalNAc. J Am Soc Mass Spectrom 2022. [PMID: 36122299 DOI: 10.1021/jasms.2c00172] [Reference Citation Analysis]
6 Wang J, Cao W, Zhang W, Zeng X, Su S, Cao H, Ding X, Ma J, Dou B, Li X. Ac34FGlcNAz Is an Effective Metabolic Chemical Reporter for O-GlcNAcylated Proteins with Decreased S-glyco-modification. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.106139] [Reference Citation Analysis]
7 Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol 2022;13:943576. [DOI: 10.3389/fendo.2022.943576] [Reference Citation Analysis]
8 Very N, El Yazidi-belkoura I. Targeting O-GlcNAcylation to overcome resistance to anti-cancer therapies. Front Oncol 2022;12:960312. [DOI: 10.3389/fonc.2022.960312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang X, Liu M, Chu Y, Liu Y, Cao X, Zhang H, Huang Y, Gong A, Liao X, Wang D, Zhu H. O-GlcNAcylation of ZEB1 facilitated mesenchymal pancreatic cancer cell ferroptosis. Int J Biol Sci 2022;18:4135-50. [PMID: 35844792 DOI: 10.7150/ijbs.71520] [Reference Citation Analysis]
10 Wang TF, Feng ZQ, Sun YW, Zhao SJ, Zou HY, Hao HS, Du WH, Zhao XM, Zhu HB, Pang YW. Disruption of O-GlcNAcylation Homeostasis Induced Ovarian Granulosa Cell Injury in Bovine. Int J Mol Sci 2022;23:7815. [PMID: 35887161 DOI: 10.3390/ijms23147815] [Reference Citation Analysis]
11 Huynh VN, Wang S, Ouyang X, Wani WY, Johnson MS, Chacko BK, Jegga AG, Qian WJ, Chatham JC, Darley-Usmar VM, Zhang J. Defining the Dynamic Regulation of O-GlcNAc Proteome in the Mouse Cortex---the O-GlcNAcylation of Synaptic and Trafficking Proteins Related to Neurodegenerative Diseases. Front Aging 2021;2:757801. [PMID: 35822049 DOI: 10.3389/fragi.2021.757801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wang HF, Wang YX, Zhou YP, Wei YP, Yan Y, Zhang ZJ, Jing ZC. Protein O-GlcNAcylation in cardiovascular diseases. Acta Pharmacol Sin 2022. [PMID: 35817809 DOI: 10.1038/s41401-022-00934-2] [Reference Citation Analysis]
13 Griffin ME, Hsieh-wilson LC. Tools for mammalian glycoscience research. Cell 2022;185:2657-2677. [DOI: 10.1016/j.cell.2022.06.016] [Reference Citation Analysis]
14 Li X, Han P, Wang G, Chen W, Wang S, Song T. SDNN-PPI: self-attention with deep neural network effect on protein-protein interaction prediction. BMC Genomics 2022;23. [DOI: 10.1186/s12864-022-08687-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 Zhang N, Liu S, Xu J, Ning T, Xie S, Min L, Zhu S, Zhang S, Zhu S. PGM3 regulates beta-catenin activity to promote colorectal cancer cell progression. Exp Biol Med (Maywood) 2022;:15353702221101810. [PMID: 35723049 DOI: 10.1177/15353702221101810] [Reference Citation Analysis]
16 Chen Y, Tang F, Qin H, Yue X, Nie Y, Huang W, Ye M. Endo-M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for O-GlcNAcylation Analysis. Angew Chem Int Ed Engl 2022;61:e202117849. [PMID: 35289036 DOI: 10.1002/anie.202117849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ahmad IAH, Losacco GL, Shchurik V, Wang X, Cohen RD, Herron AN, Aiken S, Fiorito D, Wang H, Reibarkh M, Nowak T, Makarov AA, Stoll DR, Guillarme D, Mangion I, Aggarwal VK, Yu JQ, Regalado EL. Trapping-Enrichment Multi-dimensional Liquid Chromatography with On-Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angew Chem Int Ed Engl 2022;61:e202117655. [PMID: 35139257 DOI: 10.1002/anie.202117655] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Chen Y, Tang F, Qin H, Yue X, Nie Y, Huang W, Ye M. Endo‐M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for O ‐GlcNAcylation Analysis. Angewandte Chemie. [DOI: 10.1002/ange.202117849] [Reference Citation Analysis]
19 Broekhuis JM, James BC, Cummings RD, Hasselgren PO. Posttranslational Modifications in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, Classification, and Treatment. Cancers (Basel) 2022;14:1610. [PMID: 35406382 DOI: 10.3390/cancers14071610] [Reference Citation Analysis]
20 Ma J, Hou C, Wu C. Demystifying the O-GlcNAc Code: A Systems View. Chem Rev 2022. [PMID: 35302357 DOI: 10.1021/acs.chemrev.1c01006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
21 Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biology Plus 2022. [DOI: 10.1016/j.mbplus.2022.100108] [Reference Citation Analysis]
22 Ahmad IAH, Losacco GL, Shchurik V, Wang X, Cohen RD, Herron AN, Aiken S, Fiorito D, Wang H, Reibarkh M, Nowak T, Makarov AA, Stoll DR, Guillarme D, Mangion I, Aggarwal VK, Yu J, Regalado EL. Trapping‐Enrichment Multi‐dimensional Liquid Chromatography with On‐Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202117655] [Reference Citation Analysis]
23 He J, Fan Z, Tian Y, Yang W, Zhou Y, Zhu Q, Zhang W, Qin W, Yi W. Spatiotemporal Activation of Protein O-GlcNAcylation in Living Cells. J Am Chem Soc 2022. [PMID: 35138101 DOI: 10.1021/jacs.1c11041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Kiss M, Timári I, Barna T, Mészáros Z, Slámová K, Bojarová P, Křen V, Hayes JM, Somsák L. 2-Acetamido-2-deoxy-d-glucono-1,5-lactone Sulfonylhydrazones: Synthesis and Evaluation as Inhibitors of Human OGA and HexB Enzymes. Int J Mol Sci 2022;23:1037. [PMID: 35162960 DOI: 10.3390/ijms23031037] [Reference Citation Analysis]
25 Neelamegham S, Zhou Y, Groth T. Human GlycoEnzymes and Related Genes. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00022-5] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Chen Y, Qin H, Yue X, Zhou J, Liu L, Nie Y, Ye M. Highly Efficient Enrichment of O-GlcNAc Glycopeptides Based on Chemical Oxidation and Reversible Hydrazide Chemistry. Anal Chem 2021;93:16618-27. [PMID: 34846842 DOI: 10.1021/acs.analchem.1c04031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
27 Ge Y, Woo CM. Writing and erasing O-GlcNAc from target proteins in cells. Biochem Soc Trans 2021:BST20210865. [PMID: 34783346 DOI: 10.1042/BST20210865] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Li Z, Li S, Luo M, Jhong JH, Li W, Yao L, Pang Y, Wang Z, Wang R, Ma R, Yu J, Huang Y, Zhu X, Cheng Q, Feng H, Zhang J, Wang C, Hsu JB, Chang WC, Wei FX, Huang HD, Lee TY. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res 2021:gkab1017. [PMID: 34788852 DOI: 10.1093/nar/gkab1017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
29 Wang J, Dou B, Zheng L, Cao W, Dong P, Chen Y, Zeng X, Wen Y, Pan W, Ma J, Chen J, Li X. The Metabolic Chemical Reporter Ac46AzGal Could Incorporate Intracellular Protein Modification in the Form of UDP-6AzGlc Mediated by OGT and Enzymes in the Leloir Pathway. Front Chem 2021;9:708306. [PMID: 34712646 DOI: 10.3389/fchem.2021.708306] [Reference Citation Analysis]
30 Javeed R, Hussain D, Jabeen F, Sajid MS, Fatima B, Ashiq MN, Najam-Ul-Haq M. Apo-H (beta-2-glycoprotein) intact N-glycan analysis by MALDI-TOF-MS using sialic acid derivatization. Anal Bioanal Chem 2021;413:7441-9. [PMID: 34686894 DOI: 10.1007/s00216-021-03701-0] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Akimov V, Fehling-Kaschek M, Barrio-Hernandez I, Puglia M, Bunkenborg J, Nielsen MM, Timmer J, Dengjel J, Blagoev B. Magnitude of Ubiquitination Determines the Fate of Epidermal Growth Factor Receptor Upon Ligand Stimulation. J Mol Biol 2021;433:167240. [PMID: 34508725 DOI: 10.1016/j.jmb.2021.167240] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Xu H, Du M, Shen Y, Yang Y, Ding F, Yu S. Enhancement of O-GlcNAcylation on Mitochondrial Proteins with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside, Contributes to the Mitochondrial Network, Cellular Bioenergetics and Stress Response in Neuronal Cells under Ischemic-like Conditions. Molecules 2021;26:5883. [PMID: 34641427 DOI: 10.3390/molecules26195883] [Reference Citation Analysis]
33 Ma J, Hou C, Li Y, Chen S, Wu C. OGT Protein Interaction Network (OGT-PIN): A Curated Database of Experimentally Identified Interaction Proteins of OGT. Int J Mol Sci 2021;22:9620. [PMID: 34502531 DOI: 10.3390/ijms22179620] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
34 Lu J, Liang Y, Meng H, Zhang A, Zhao J, Zhang C. Metabolic Controls on Epigenetic Reprogramming in Regulatory T Cells. Front Immunol 2021;12:728783. [PMID: 34421930 DOI: 10.3389/fimmu.2021.728783] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Weng Y, Wang Z, Fukuhara Y, Tanai A, Ikegame M, Yamada D, Takarada T, Izawa T, Hayano S, Yoshida K, Kamioka H, Okamura H. O-GlcNAcylation drives calcium signaling toward osteoblast differentiation: A bioinformatics-oriented study. Biofactors 2021. [PMID: 34418170 DOI: 10.1002/biof.1774] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Reggiori F, Gabius HJ, Aureli M, Römer W, Sonnino S, Eskelinen EL. Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021. [PMID: 34390447 DOI: 10.1007/s10719-021-10007-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Kiss M, Szabó E, Bocska B, Sinh LT, Fernandes CP, Timári I, Hayes JM, Somsák L, Barna T. Nanomolar inhibition of human OGA by 2-acetamido-2-deoxy-d-glucono-1,5-lactone semicarbazone derivatives. Eur J Med Chem 2021;223:113649. [PMID: 34186233 DOI: 10.1016/j.ejmech.2021.113649] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Pang Y, Xu X, Xiang X, Li Y, Zhao Z, Li J, Gao S, Liu Q, Mai K, Ai Q. High Fat Activates O-GlcNAcylation and Affects AMPK/ACC Pathway to Regulate Lipid Metabolism. Nutrients 2021;13:1740. [PMID: 34063748 DOI: 10.3390/nu13061740] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
39 Balsollier C, Pieters RJ, Anderluh M. Overview of the Assays to Probe O-Linked β-N-Acetylglucosamine Transferase Binding and Activity. Molecules 2021;26:1037. [PMID: 33669256 DOI: 10.3390/molecules26041037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Ma J, Li Y, Hou C, Wu C. O-GlcNAcAtlas: A database of experimentally identified O-GlcNAc sites and proteins. Glycobiology 2021;31:719-23. [PMID: 33442735 DOI: 10.1093/glycob/cwab003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 25.0] [Reference Citation Analysis]
41 Hamala V, Červenková Šťastná L, Kurfiřt M, Cuřínová P, Balouch M, Hrstka R, Voňka P, Karban J. The effect of deoxyfluorination and O-acylation on the cytotoxicity of N-acetyl-D-gluco- and D-galactosamine hemiacetals. Org Biomol Chem 2021;19:4497-506. [PMID: 33949602 DOI: 10.1039/d1ob00497b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]