BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021;121:10865-907. [DOI: 10.1021/acs.chemrev.0c00883] [Cited by in Crossref: 59] [Cited by in F6Publishing: 74] [Article Influence: 29.5] [Reference Citation Analysis]
Number Citing Articles
1 Hung Y, Xiang W, Zou Z, Zhang Y, Wang B, Yu C, Zheng Y, Pan P. Isodimorphic crystallization and thermally-induced crystal transitions in poly(octamethylene-ran-decamethylene carbonate): Critical role of comonomer defects. Polymer 2023;274:125903. [DOI: 10.1016/j.polymer.2023.125903] [Reference Citation Analysis]
2 Yang Z, Hu C, Gao Z, Duan R, Sun Z, Zhou Y, Pang X, Chen X. Precise Synthesis of Sequence-Controlled Oxygen-Rich Multiblock Copolymers via Reversible Carboxylation of a Commercial Salen-Mn(III) Catalyst. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00154] [Reference Citation Analysis]
3 Wei F, Qiu J, Zeng Y, Liu Z, Wang X, Xie G. A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO2 into Cyclic Carbonates. Materials 2023;16:2132. [DOI: 10.3390/ma16062132] [Reference Citation Analysis]
4 Reeya Agrawal, Anjan Kumar, Mustafa K. A. Mohammed, Sangeeta Singh. Biomaterial types, properties, medical applications, and other factors: a recent review. J. Zhejiang Univ. Sci. A 2023. [ DOI: 10.1631/jzus.A2200403] [Reference Citation Analysis]
5 Li J, Tao S, Chen F, Li M, Liu N. N-heterocyclic carbene-pyridine ligand coordinated Mo(II) complexes catalyzed synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of CO2 Utilization 2023;69:102384. [DOI: 10.1016/j.jcou.2022.102384] [Reference Citation Analysis]
6 Zhang W, Hou Z, Chen S, Guo J, Hu J, Yang L, Cai G. Aspergillus oryzae lipase-mediated in vitro enzymatic degradation of poly (2,2′-dimethyltrimethylene carbonate-co-ε-caprolactone). Polymer Degradation and Stability 2023. [DOI: 10.1016/j.polymdegradstab.2023.110340] [Reference Citation Analysis]
7 Hernández E, Belinchón A, Santiago R, Moya C, Navarro P, Palomar J. Solvent-catalyst optimization of ionic liquid-based CO2 conversion to propylene carbonate: Laboratory validation and techno-economic analysis. Journal of CO2 Utilization 2023;69:102417. [DOI: 10.1016/j.jcou.2023.102417] [Reference Citation Analysis]
8 Wu X, Xu D, De Bruyn M, Trimmel G, Barta K. Novel stereoisomeric lignin-derived polycarbonates: towards the creation of bisphenol polycarbonate mimics. Polym Chem 2023;14:907-12. [PMID: 36846093 DOI: 10.1039/d2py01523d] [Reference Citation Analysis]
9 Wu L, Wang Y, Zhao X, Mao H, Gu Z. Investigating the Biodegradation Mechanism of Poly(trimethylene carbonate): Macrophage-Mediated Erosion by Secreting Lipase. Biomacromolecules 2023;24:921-8. [PMID: 36644840 DOI: 10.1021/acs.biomac.2c01350] [Reference Citation Analysis]
10 Chong R, Qian F, Sun ZH, Wei MJ, Zhou WY, Zhang J, He MY, Chen Q, Qian JF. Catalytic behavior of a ZnO/TiO(2) composite in the synthesis of polycarbonate diol. RSC Adv 2023;13:4890-7. [PMID: 36762090 DOI: 10.1039/d2ra07527j] [Reference Citation Analysis]
11 Norouzi F, Abdolmaleki A. CO2 conversion into carbonate using pyridinium-based ionic liquids under mild conditions. Fuel 2023;334:126641. [DOI: 10.1016/j.fuel.2022.126641] [Reference Citation Analysis]
12 Zhu J, Luo X, Li X. Ring-Opening Polymerization of Trimethylene Carbonate with Phosphazene Organocatalyst. Polymers (Basel) 2023;15:720. [PMID: 36772021 DOI: 10.3390/polym15030720] [Reference Citation Analysis]
13 Liao X, He JH, Zhang YT. CO(2) Fixation and PCHC Depolymerization by a Dinuclear β-Diketiminato Zinc Complex. Chem Asian J 2023;18:e202201076. [PMID: 36468413 DOI: 10.1002/asia.202201076] [Reference Citation Analysis]
14 Palenzuela M, Sarisuta K, Navarro M, Kumamoto N, Chanthaset N, Monot J, Ajiro H, Martín-vaca B, Bourissou D. 5-Methylene-1,3-dioxane-2-one: A First-Choice Comonomer for Trimethylene Carbonate. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02270] [Reference Citation Analysis]
15 Zhao C, Chen Q, Garcia-hernandez JD, Watanabe LK, Rawson JM, Rao J, Manners I. Uniform and Length-Tunable, Paramagnetic Self-Assembled Nitroxide-Based Nanofibers for Magnetic Resonance Imaging. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02227] [Reference Citation Analysis]
16 Yu T, Jiang B, Zheng L, Liu Y, An J, Liu J, Zhang Z. A simple multiple-amine heterogeneous composite for efficient conversion of CO2 to cyclic carbonates under atmospheric pressure. Journal of CO2 Utilization 2022;66:102288. [DOI: 10.1016/j.jcou.2022.102288] [Reference Citation Analysis]
17 Zheng D, Xu D, Qiu J, Zhang W, Li H, Zhou D. Insight into the effect of anions on cycloaddition of CO2 catalyzed by carboxylate anion-based ionic liquids: A theoretical study by QM and MD. Journal of Molecular Liquids 2022;368:120629. [DOI: 10.1016/j.molliq.2022.120629] [Reference Citation Analysis]
18 Gregory GL, Sulley GS, Kimpel J, Łagodzińska M, Häfele L, Carrodeguas LP, Williams CK. Block Poly(carbonate-ester) Ionomers as High-Performance and Recyclable Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022;61:e202210748. [PMID: 36178774 DOI: 10.1002/anie.202210748] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Fukushima K, Watanabe Y, Ueda T, Nakai S, Kato T. Organocatalytic depolymerization of poly(trimethylene carbonate). Journal of Polymer Science 2022. [DOI: 10.1002/pol.20220551] [Reference Citation Analysis]
20 Watanabe Y, Kato R, Fukushima K, Kato T. Degradable and Nanosegregated Elastomers with Multiblock Sequences of Biobased Aromatic Mesogens and Biofunctional Aliphatic Oligocarbonates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01747] [Reference Citation Analysis]
21 Hernández E, Belinchón A, Pachón ER, Navarro P, Palomar J. Toward Sustainable and Cost‐Effective CO 2 Conversion Processes to Propylene Carbonate Based on Ionic Liquids. Advanced Sustainable Systems 2022. [DOI: 10.1002/adsu.202200384] [Reference Citation Analysis]
22 Nifant'ev IE, Pyatakov DA, Tavtorkin AN, Ivchenko PV. Chemical recycling and upcycling of poly(bisphenol A carbonate) via metal acetate catalyzed glycolysis. Polymer Degradation and Stability 2022. [DOI: 10.1016/j.polymdegradstab.2022.110210] [Reference Citation Analysis]
23 Lalanne-tisné M, Eyley S, De Winter J, Favrelle-huret A, Thielemans W, Zinck P. Cellulose nanocrystals modification by grafting from ring opening polymerization of a cyclic carbonate. Carbohydrate Polymers 2022;295:119840. [DOI: 10.1016/j.carbpol.2022.119840] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Kaluzynski K, Pretula J, Kaźmierski S, Lewinski P, Cypryk M, Penczek S. Cationic polymerization of cyclic trimethylene carbonate induced with initiator and catalyst in one molecule: Polymer structure, kinetics and DFT. Journal of Catalysis 2022;415:200-217. [DOI: 10.1016/j.jcat.2022.10.009] [Reference Citation Analysis]
25 Fritz-langhals E. Unique Superbase TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-ene): From Catalytic Activity and One-Pot Synthesis to Broader Application in Industrial Chemistry. Org Process Res Dev . [DOI: 10.1021/acs.oprd.2c00248] [Reference Citation Analysis]
26 Lalanne-tisné M, Favrelle-huret A, Thielemans W, Prates Ramalho JP, Zinck P. DFT Investigations on the Ring-Opening Polymerization of Trimethylene Carbonate Catalysed by Heterocyclic Nitrogen Bases. Catalysts 2022;12:1280. [DOI: 10.3390/catal12101280] [Reference Citation Analysis]
27 Liao X, Su Y, Tang X. Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1377-5] [Reference Citation Analysis]
28 Wu Y, Fan H, Zhang W, Wang M, Cai Z, Zhu J. Biobased Bifunctional Monomers toward Functionalizable Polycarbonates and Poly(cyclic olefin)s with Tunable Properties. Macromolecules. [DOI: 10.1021/acs.macromol.2c01754] [Reference Citation Analysis]
29 Nagae H, Akebi S, Matsushiro S, Sakamoto K, Iwasaki T, Nozaki K, Mashima K. Chain Transfer Approach for Terminal Functionalization of Alternating Copolymerization of CO 2 and Epoxide by Using Active Methylene Compounds as Chain Transfer Agents. Macromolecules. [DOI: 10.1021/acs.macromol.2c01761] [Reference Citation Analysis]
30 Li S, Ma X, Li R, Sun C, Hu J, Zhang Y. Lipase-catalyzed ring-opening copolymerization of macrocycles for diselenide-functionalized long-chain polycarbonate: Synthesis, kinetic process and ROS responsiveness. Reactive and Functional Polymers 2022;179:105385. [DOI: 10.1016/j.reactfunctpolym.2022.105385] [Reference Citation Analysis]
31 Wu L, Wu Z, Wang Y, Han L, Mao H, Gu Z. The effect of chemical composition on the degradation kinetics of high molecular weight poly(trimethylene carbonate-co-L-lactide). Polymer Degradation and Stability 2022. [DOI: 10.1016/j.polymdegradstab.2022.110183] [Reference Citation Analysis]
32 Han S, Hu Z, Zhang W, Hu J, Yang L. Flexible segments regulating the gelation behaviours of aliphatic polycarbonate gels with excellent shape memory and self-healing properties. Journal of Molecular Liquids 2022;364:120015. [DOI: 10.1016/j.molliq.2022.120015] [Reference Citation Analysis]
33 Zhao J, Yue T, Ren B, Liu Y, Ren W, Lu X. Recyclable Sulfur-Rich Polymers with Enhanced Thermal, Mechanical, and Optical Performance. Macromolecules. [DOI: 10.1021/acs.macromol.2c01628] [Reference Citation Analysis]
34 Wan L, Lu L, Zhu T, Liu Z, Du R, Luo Q, Xu Q, Zhang Q, Jia X. Bulk Erosion Degradation Mechanism for Poly(1,8-octanediol-co-citrate) Elastomer: An In Vivo and In Vitro Investigation. Biomacromolecules 2022. [PMID: 36094894 DOI: 10.1021/acs.biomac.2c00737] [Reference Citation Analysis]
35 Su L, Dalby KS, Luehmann H, Elkassih SA, Cho S, He X, Detering L, Lin Y, Kang N, Moore DA, Laforest R, Sun G, Liu Y, Wooley KL. Ultrasmall, elementary and highly translational nanoparticle X-ray contrast media from amphiphilic iodinated statistical copolymers. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.09.009] [Reference Citation Analysis]
36 Andriani F, Fuoco T. Statistical enchainment of ester/ether and carbonate cleavable bonds to control copolymers’ erosion rate and trigger environment-specific degradation. European Polymer Journal 2022;178:111457. [DOI: 10.1016/j.eurpolymj.2022.111457] [Reference Citation Analysis]
37 Lidston CAL, Severson SM, Abel BA, Coates GW. Multifunctional Catalysts for Ring-Opening Copolymerizations. ACS Catal . [DOI: 10.1021/acscatal.2c02524] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Hou Z, Chen S, Hu W, Guo J, Li P, Hu J, Yang L. Long-term in vivo degradation behavior of poly(trimethylene carbonate-co-2, 2′-dimethyltrimethylene carbonate). European Polymer Journal 2022;177:111442. [DOI: 10.1016/j.eurpolymj.2022.111442] [Reference Citation Analysis]
39 Hernández E, Santiago R, Belinchón A, Maria Vaquerizo G, Moya C, Navarro P, Palomar J. Universal and low energy-demanding platform to produce propylene carbonate from CO2 using hydrophilic ionic liquids. Separation and Purification Technology 2022;295:121273. [DOI: 10.1016/j.seppur.2022.121273] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Pan K, Zhang W, Shi H, Dai M, Wei W, Liu X, Li X. Zinc Ion-crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications. Colloids Surf B Biointerfaces 2022;218:112725. [PMID: 35914466 DOI: 10.1016/j.colsurfb.2022.112725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Czysch C, Dinh T, Fröder Y, Bixenmann L, Komforth P, Balint A, Räder HJ, Naumann S, Nuhn L. Nontoxic N-Heterocyclic Olefin Catalyst Systems for Well-Defined Polymerization of Biocompatible Aliphatic Polycarbonates. ACS Polym Au 2022;2:371-9. [PMID: 36855582 DOI: 10.1021/acspolymersau.2c00017] [Reference Citation Analysis]
42 Qiao C, Shi W, Brandolese A, Benet-Buchholz J, Escudero-Adán EC, Kleij AW. A Novel Catalytic Route to Polymerizable Bicyclic Cyclic Carbonate Monomers from Carbon Dioxide. Angew Chem Int Ed Engl 2022;61:e202205053. [PMID: 35441777 DOI: 10.1002/anie.202205053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Wei F, Tang J, Zuhra Z, Wang S, Wang X, Wang X, Xie G. [M(Me6Tren)X]X complex as efficacious bifunctional catalyst for CO2 cycloaddition: The synergism of the metal and halogen ions. Journal of CO2 Utilization 2022;61:102048. [DOI: 10.1016/j.jcou.2022.102048] [Reference Citation Analysis]
44 Sun W, Lu K, Wang L, Hao Q, Liu J, Wang Y, Wu Z, Chen H. Introducing SuFEx click chemistry into aliphatic polycarbonates: a novel toolbox/platform for post-modification as biomaterials. J Mater Chem B 2022. [PMID: 35734968 DOI: 10.1039/d2tb01052f] [Reference Citation Analysis]
45 Sun W, Shen X, Liu J, Wu Z, Chen H. Preparing Well-Defined Polyacrylamide-b-Polycarbonate by Integrating Photoiniferter Polymerization and TBD-Catalyzed ROP. Macromol Rapid Commun 2022;:e2200376. [PMID: 35726483 DOI: 10.1002/marc.202200376] [Reference Citation Analysis]
46 Miao P, Leng X, Liu J, Song G, He M, Li Y. Regulating the Dynamic Behaviors of Transcarbamoylation-Based Vitrimers via Mono-Variation in Density of Exchangeable Hydroxyl. Macromolecules 2022;55:4956-66. [DOI: 10.1021/acs.macromol.2c00127] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
47 Xiang Z, Guan X, Ma Z, Shi Q, Panteleev M, Ataullakhanov FI. Bioactive engineered scaffolds based on PCL-PEG-PCL and tumor cell-derived exosomes to minimize the foreign body reaction. Biomater Biosyst 2022;7:100055. [PMID: 36824486 DOI: 10.1016/j.bbiosy.2022.100055] [Reference Citation Analysis]
48 Katoh T, Saso M, Ohta Y, Yokozawa T. Synthesis of polycarbonates and polycarbonate/polyester copolymers through an ester-carbonate exchange reaction. Polym J. [DOI: 10.1038/s41428-022-00663-7] [Reference Citation Analysis]
49 Kiriratnikom J, Guo J, Cao X, Khan MU, Zhang C, Zhang X. Metal‐free terpolymerization of propylene oxide, carbon dioxide, and carbonyl sulfide: A facile route to sulfur‐containing polycarbonates with gradient sequences. Journal of Polymer Science. [DOI: 10.1002/pol.20220166] [Reference Citation Analysis]
50 Shen L, Zhang J, Dang X, Chen H, Yuan H. Preparation and application of a nanocomposite of dopamine modified zirconium metal organic framework and polythiophene for solid-phase microextraction/gas chromatography of phenols released from polycarbonate materials. Journal of Chromatography A 2022. [DOI: 10.1016/j.chroma.2022.463187] [Reference Citation Analysis]
51 Wang Y, Liu Y, Su Q, Li Y, Deng L, Dong L, Fu M, Liu S, Cheng W. Poly(ionic liquid) materials tailored by carboxyl groups for the gas phase-conversion of epoxide and CO2 into cyclic carbonates. Journal of CO2 Utilization 2022;60:101976. [DOI: 10.1016/j.jcou.2022.101976] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
52 Wang T, Xing L, Qu M, Pan Y, Liu C, Shen C, Liu X. Superhydrophobic polycarbonate blend monolith with micro/nano porous structure for selective oil/water separation. Polymer 2022;253:124994. [DOI: 10.1016/j.polymer.2022.124994] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Ngassam Tounzoua C, Grignard B, Detrembleur C. Exovinylene Cyclic Carbonates: Multifaceted CO2 -Based Building Blocks for Modern Chemistry and Polymer Science. Angew Chem Int Ed Engl 2022;61:e202116066. [PMID: 35266271 DOI: 10.1002/anie.202116066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
54 Qiao C, Shi W, Brandolese A, Benet‐buchholz J, Escudero‐adán EC, Kleij AW. A Novel Catalytic Route to Polymerizable Bicyclic Cyclic Carbonate Monomers from Carbon Dioxide. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202205053] [Reference Citation Analysis]
55 Fan HZ, Yang X, Chen JH, Tu YM, Cai Z, Zhu JB. Advancing the Development of Recyclable Aromatic Polyesters by Functionalization and Stereocomplexation. Angew Chem Int Ed Engl 2022;61:e202117639. [PMID: 35104021 DOI: 10.1002/anie.202117639] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
56 Yang X, Zhang W, Huang H, Dai J, Wang M, Fan H, Cai Z, Zhang Q, Zhu J. Stereoselective Ring-Opening Polymerization of Lactones with a Fused Ring Leading to Semicrystalline Polyesters. Macromolecules. [DOI: 10.1021/acs.macromol.1c02555] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Siddig LA, Alzard RH, Nguyen HL, Göb CR, Alnaqbi MA, Alzamly A. Hexagonal Layer Manganese Metal-Organic Framework for Photocatalytic CO2 Cycloaddition Reaction. ACS Omega 2022;7:9958-63. [PMID: 35350318 DOI: 10.1021/acsomega.2c00663] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
58 Miyake R, Maehara A, Chanthaset N, Ajiro H. Thermal Property Control by Copolymerization of Trimethylene Carbonate and Its Derivative Bearing Triphenylmethyl Group. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202104326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Hu C, Pang X, Chen X. Self-Switchable Polymerization: A Smart Approach to Sequence-Controlled Degradable Copolymers. Macromolecules. [DOI: 10.1021/acs.macromol.2c00085] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
60 Jiang S, Liu L. Novel carbon dioxide based poly(hydroxyurethane-urea)s: Synthesis and properties. Polymer 2022;244:124652. [DOI: 10.1016/j.polymer.2022.124652] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
61 Wang T, Li W, Ge X, Qiu T, Wang X. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors. Chinese Journal of Chemical Engineering 2022. [DOI: 10.1016/j.cjche.2022.02.019] [Reference Citation Analysis]
62 Fan H, Yang X, Chen J, Tu Y, Cai Z, Zhu J. Advancing the Development of Recyclable Aromatic Polyesters by Functionalization and Stereocomplexation. Angewandte Chemie. [DOI: 10.1002/ange.202117639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Ma J, Wu Y, Yan X, Chen C, Wu T, Fan H, Liu Z, Han B. Efficient synthesis of cyclic carbonates from CO2 under ambient conditions over Zn(betaine)2Br2: experimental and theoretical studies. Phys Chem Chem Phys 2022;24:4298-304. [PMID: 35107469 DOI: 10.1039/d1cp05553d] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Zhang W, Dai J, Wu YC, Chen JX, Shan SY, Cai Z, Zhu JB. Highly Reactive Cyclic Carbonates with a Fused Ring toward Functionalizable and Recyclable Polycarbonates. ACS Macro Lett 2022;11:173-8. [PMID: 35574765 DOI: 10.1021/acsmacrolett.1c00653] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 21.0] [Reference Citation Analysis]
65 Gorbunov DN, Nenasheva MV, Terenina MV, Kardasheva YS, Kardashev SV, Naranov ER, Bugaev AL, Soldatov AV, Maximov AL, Karakhanov EA. Transformations of Carbon Dioxide under Homogeneous Catalysis Conditions (A Review). Pet Chem . [DOI: 10.1134/s0965544122010054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 He M, Wang R, Wan P, Wang H, Cheng Y, Miao P, Wei Z, Leng X, Li Y, Du J, Fan J, Sun W, Peng X. Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules 2022. [PMID: 35107271 DOI: 10.1021/acs.biomac.1c01651] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Shi C, Clarke RW, McGraw ML, Chen EY. Closing the "One Monomer-Two Polymers-One Monomer" Loop via Orthogonal (De)polymerization of a Lactone/Olefin Hybrid. J Am Chem Soc 2022. [PMID: 35084829 DOI: 10.1021/jacs.1c12278] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
68 Kawamoto M, Mori Y, Tsuge A, Endo T. Anionic ring‐opening polymerization behavior of trans ‐cyclohexene carbonate using metal tert ‐butoxides: Construction of living anionic ring‐opening polymerization by lithium tert ‐butoxide. Journal of Polymer Science. [DOI: 10.1002/pol.20210901] [Reference Citation Analysis]
69 Huang J, Olsén P, Svensson Grape E, Inge AK, Odelius K. Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules. [DOI: 10.1021/acs.macromol.1c02225] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
70 Pérez A, Lligadas G, Ronda JC, Galià M, Cádiz V. Thermoreversible poly(trimethylene carbonate)-based block copolymers containing reactive furfuryl groups via sequential ROP and ATRP. European Polymer Journal 2022;162:110873. [DOI: 10.1016/j.eurpolymj.2021.110873] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Watanabe Y, Takaoka S, Haga Y, Kishi K, Hakozaki S, Narumi A, Kato T, Tanaka M, Fukushima K. Organic carboxylate salt-enabled alternative synthetic routes for bio-functional cyclic carbonates and aliphatic polycarbonates. Polym Chem . [DOI: 10.1039/d2py00705c] [Reference Citation Analysis]
72 de la Cruz-martínez F, Castro-osma JA, Lara-sánchez A. Catalytic synthesis of bio-sourced organic carbonates and sustainable hybrid materials from CO2. Advances in Catalysis 2022. [DOI: 10.1016/bs.acat.2022.07.003] [Reference Citation Analysis]
73 Li G, Dong S, Fu P, Yue Q, Zhou Y, Wang J. Synthesis of porous poly(ionic liquid)s for chemical CO 2 fixation with epoxides. Green Chem . [DOI: 10.1039/d2gc00324d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
74 Liptrot DJ, English LE. Main Group Complexes in Polymer Synthesis. Comprehensive Organometallic Chemistry IV 2022. [DOI: 10.1016/b978-0-12-820206-7.00136-0] [Reference Citation Analysis]
75 Kleij AW. Functional CO2 based heterocycles as precursors in organic synthesis. Advances in Catalysis 2022. [DOI: 10.1016/bs.acat.2022.06.001] [Reference Citation Analysis]
76 Zhang Y, Lai W, Xie S, Zhou H, Lu X. Facile synthesis, structure and properties of CO 2 -sourced poly(thioether- co -carbonate)s containing acetyl pendants via thio-ene click polymerization. Polym Chem 2022;13:201-8. [DOI: 10.1039/d1py01477c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Song KS, Fritz PW, Coskun A. Porous organic polymers for CO2 capture, separation and conversion. Chem Soc Rev 2022. [DOI: 10.1039/d2cs00727d] [Reference Citation Analysis]
78 Andreica BI, Ailincai D, Sandu AI, Marin L. Amphiphilic chitosan-g-poly(trimethylene carbonate) - A new approach for biomaterials design. Int J Biol Macromol 2021;193:414-24. [PMID: 34715200 DOI: 10.1016/j.ijbiomac.2021.10.174] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
79 Zhou H, Zhang F, Wang R, Lai W, Xie S, Ren W, Lu X. Facile Access to Functionalized Poly(thioether)s via Anionic Ring-Opening Decarboxylative Polymerization of COS-Sourced α-Alkylidene Cyclic Thiocarbonates. Macromolecules 2021;54:10395-404. [DOI: 10.1021/acs.macromol.1c01475] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Penczek S, Pretula J. Activated Monomer Mechanism (AMM) in Cationic Ring-Opening Polymerization. The Origin of the AMM and Further Development in Polymerization of Cyclic Esters. ACS Macro Lett 2021;10:1377-97. [PMID: 35549023 DOI: 10.1021/acsmacrolett.1c00509] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
81 Ji YB, Park JY, Kang Y, Lee S, Ju HJ, Choi S, Lee BY, Kim MS. Scaffold printing using biodegradable poly(1,4-butylene carbonate) ink: printability, in vivo physicochemical properties, and biocompatibility. Mater Today Bio 2021;12:100129. [PMID: 34604731 DOI: 10.1016/j.mtbio.2021.100129] [Reference Citation Analysis]
82 Lamparelli DH, Capacchione C. Terpolymerization of CO2 with Epoxides and Cyclic Organic Anhydrides or Cyclic Esters. Catalysts 2021;11:961. [DOI: 10.3390/catal11080961] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
83 Huang X, Li Y, Li D, Zhou X, Qiao H, Yang L, Ji Y, Zhang X, Huang D, Chen W. Black phosphorus assisted polyionic micelles with efficient PTX loading for remotely controlled release and synergistic treatment of drug-resistant tumors. Biomater Sci 2021. [PMID: 34369491 DOI: 10.1039/d1bm01033f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
84 Ansari I, Singh P, Mittal A, Mahato RI, Chitkara D. 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials 2021;275:120953. [PMID: 34218051 DOI: 10.1016/j.biomaterials.2021.120953] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
85 Harvey PD. Porphyrin-based metal- and covalent-organic frameworks as heterogeneous nanosized photocatalysts in organic synthesis. J Mater Chem C 2021;9:16885-910. [DOI: 10.1039/d1tc04147a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]