BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2020;33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 28.7] [Reference Citation Analysis]
Number Citing Articles
1 Ochenkowska K, Herold A, Samarut É. Zebrafish Is a Powerful Tool for Precision Medicine Approaches to Neurological Disorders. Front Mol Neurosci 2022;15:944693. [PMID: 35875659 DOI: 10.3389/fnmol.2022.944693] [Reference Citation Analysis]
2 Anderson AL, Dubanksy BD, Wilson LB, Tanguay RL, Rice CD. Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope. Toxics 2022;10:404. [DOI: 10.3390/toxics10070404] [Reference Citation Analysis]
3 Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022;:1-22. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Reference Citation Analysis]
4 Vasamsetti BMK, Chon K, Kim J, Oh J, Yoon C, Park H. Developmental Toxic Effects of Thiram on Developing Zebrafish (Danio rerio) Embryos. Toxics 2022;10:369. [DOI: 10.3390/toxics10070369] [Reference Citation Analysis]
5 Rusterholz TDS, Hofmann C, Bachmann-gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022;13:939527. [DOI: 10.3389/fgene.2022.939527] [Reference Citation Analysis]
6 Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022;188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Reference Citation Analysis]
7 Cáceres-vélez PR, Ali A, Fournier-level A, Dunshea FR, Jusuf PR. Phytochemical and Safety Evaluations of Finger Lime, Mountain Pepper, and Tamarind in Zebrafish Embryos. Antioxidants 2022;11:1280. [DOI: 10.3390/antiox11071280] [Reference Citation Analysis]
8 Rosa JGS, Lima C, Lopes-Ferreira M. Zebrafish Larvae Behavior Models as a Tool for Drug Screenings and Pre-Clinical Trials: A Review. Int J Mol Sci 2022;23:6647. [PMID: 35743088 DOI: 10.3390/ijms23126647] [Reference Citation Analysis]
9 Shenoy A, Banerjee M, Upadhya A, Bagwe-parab S, Kaur G. The Brilliance of the Zebrafish Model: Perception on Behavior and Alzheimer’s Disease. Front Behav Neurosci 2022;16:861155. [DOI: 10.3389/fnbeh.2022.861155] [Reference Citation Analysis]
10 Al-Thani HF, Shurbaji S, Zakaria ZZ, Hasan MH, Goracinova K, Korashy HM, Yalcin HC. Reduced Cardiotoxicity of Ponatinib-Loaded PLGA-PEG-PLGA Nanoparticles in Zebrafish Xenograft Model. Materials (Basel) 2022;15:3960. [PMID: 35683259 DOI: 10.3390/ma15113960] [Reference Citation Analysis]
11 Faria M, Bellot M, Bedrossiantz J, Ramírez JRR, Prats E, Garcia-reyero N, Gomez-canela C, Mestres J, Rovira X, Barata C, Oliván LMG, Llebaria A, Raldua D. Environmental levels of carbaryl impair zebrafish larvae behaviour: The potential role of ADRA2B and HTR2B. Journal of Hazardous Materials 2022;431:128563. [DOI: 10.1016/j.jhazmat.2022.128563] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Vincent F, Nueda A, Lee J, Schenone M, Prunotto M, Mercola M. Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov. [DOI: 10.1038/s41573-022-00472-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Nozari A, Gagné R, Lu C, Yauk C, Trudeau VL. Brief Developmental Exposure to Fluoxetine Causes Life-Long Alteration of the Brain Transcriptome in Zebrafish. Front Endocrinol (Lausanne) 2022;13:847322. [PMID: 35573988 DOI: 10.3389/fendo.2022.847322] [Reference Citation Analysis]
14 Mundy PC, Mendieta R, Lein PJ. Diisopropylfluorophosphate (DFP) volatizes and cross-contaminates wells in a common 96-well plate format used in zebrafish larvae toxicology studies. Journal of Pharmacological and Toxicological Methods 2022. [DOI: 10.1016/j.vascn.2022.107173] [Reference Citation Analysis]
15 Onyenwoke RU, Leung T, Huang X, Parker D, Shipman JG, Alhadyan SK, Sivaraman V. An assessment of vaping-induced inflammation and toxicity: A feasibility study using a 2-stage zebrafish and mouse platform. Food and Chemical Toxicology 2022;163:112923. [DOI: 10.1016/j.fct.2022.112923] [Reference Citation Analysis]
16 Bai C, Tang M. Progress on the toxicity of quantum dots to model organism-zebrafish. J Appl Toxicol 2022. [PMID: 35441386 DOI: 10.1002/jat.4333] [Reference Citation Analysis]
17 Lakshmi SA, Alexpandi R, Shafreen RMB, Tamilmuhilan K, Srivathsan A, Kasthuri T, Ravi AV, Shiburaj S, Pandian SK. Evaluation of antibiofilm potential of four-domain α-amylase from Streptomyces griseus against exopolysaccharides (EPS) of bacterial pathogens using Danio rerio. Arch Microbiol 2022;204:243. [PMID: 35381886 DOI: 10.1007/s00203-022-02847-4] [Reference Citation Analysis]
18 Wang Y, Zhou M, Wang J, Lin C, Gao X, Zhang L, Yao W, Zhang L. Developmental Cardiotoxicity and Hepatotoxicity of Flurbiprofen Axetil to Zebrafish Embryo. Assay Drug Dev Technol 2022;20:125-35. [PMID: 35442757 DOI: 10.1089/adt.2021.127] [Reference Citation Analysis]
19 Pavic A, Stojanovic Z, Pekmezovic M, Veljović Đ, O’connor K, Malagurski I, Nikodinovic-runic J. Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model. Pharmaceutics 2022;14:696. [DOI: 10.3390/pharmaceutics14040696] [Reference Citation Analysis]
20 Li Y, Ren B, Zhao T, Chen H, Zhao Y, Liang H, Liang H. Enantioselective toxic effects of mefentrifluconazole in the early life stage of zebrafish (Danio rerio). Environ Toxicol 2022. [PMID: 35297557 DOI: 10.1002/tox.23515] [Reference Citation Analysis]
21 Messerschmidt VL, Chintapula U, Bonetesta F, Laboy-Segarra S, Naderi A, Nguyen KT, Cao H, Mager E, Lee J. In vivo Evaluation of Non-viral NICD Plasmid-Loaded PLGA Nanoparticles in Developing Zebrafish to Improve Cardiac Functions. Front Physiol 2022;13:819767. [PMID: 35283767 DOI: 10.3389/fphys.2022.819767] [Reference Citation Analysis]
22 Krishnasamy Sekar R, Arunachalam R, Anbazhagan M, Palaniyappan S, Veeran S, Sridhar A, Ramasamy T. Accumulation, Chronicity, and Induction of Oxidative Stress Regulating Genes Through Allium cepa L. Functionalized Silver Nanoparticles in Freshwater Common Carp (Cyprinus carpio). Biol Trace Elem Res 2022. [PMID: 35199287 DOI: 10.1007/s12011-022-03164-z] [Reference Citation Analysis]
23 Bailone RL, Fukushima HCS, de Aguiar LK, Borra RC. The endocannabinoid system in zebrafish and its potential to study the effects of Cannabis in humans. Lab Anim Res 2022;38. [DOI: 10.1186/s42826-022-00116-5] [Reference Citation Analysis]
24 Park YM, Dahlem C, Meyer MR, Kiemer AK, Müller R, Herrmann J. Induction of Liver Size Reduction in Zebrafish Larvae by the Emerging Synthetic Cannabinoid 4F-MDMB-BINACA and Its Impact on Drug Metabolism. Molecules 2022;27:1290. [PMID: 35209079 DOI: 10.3390/molecules27041290] [Reference Citation Analysis]
25 Ruchika, Sharma A, Saneja A. Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.02.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Phuna ZX, Panda BP, Shivashekaregowda NKH, Madhavan P. Recent development in nanocrystal based drug delivery for neurodegenerative diseases: Scope, challenges, current and future prospects. Journal of Drug Delivery Science and Technology 2022;68:102921. [DOI: 10.1016/j.jddst.2021.102921] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Yan H, Liu R, Yang Q, Liu Y, Li H, Guo R, Wu L, Liu L, Liang H. A New Calcium(II)-Based Substitute for Enrofloxacin with Improved Medicinal Potential. Pharmaceutics 2022;14:249. [DOI: 10.3390/pharmaceutics14020249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Khabib MNH, Sivasanku Y, Lee HB, Kumar S, Kue CS. Alternative animal models in predictive toxicology. Toxicology 2022;465:153053. [PMID: 34838596 DOI: 10.1016/j.tox.2021.153053] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Cueto-escobedo J, German-ponciano LJ, Guillén-ruiz G, Soria-fregozo C, Herrera-huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022;15:795285. [DOI: 10.3389/fnbeh.2021.795285] [Reference Citation Analysis]
30 Halbach K, Aulhorn S, Lechtenfeld OJ, Lecluse M, Leippe S, Reemtsma T, Seiwert B, Wagner S, König J, Luckenbach T. Zebrafish Oatp1d1 Acts as a Cellular Efflux Transporter of the Anionic Herbicide Bromoxynil. Chem Res Toxicol 2022. [PMID: 34990119 DOI: 10.1021/acs.chemrestox.1c00371] [Reference Citation Analysis]
31 Dong Y, Zhao C, Wang X, Xie M, Zhong X, Song R, Yu A, Wei J, Yao J, Shan D, Lv F, She G. Lvsiyujins A–G, new sesquiterpenoids, from Curcuma phaeocaulis Valeton root tuber and their preliminary pharmacological property assessment based on ADME evaluation, molecular docking and in vitro experiments. New J Chem 2022;46:8507-22. [DOI: 10.1039/d2nj00101b] [Reference Citation Analysis]
32 Romagnoli R, Oliva P, Prencipe F, Manfredini S, Germanò MP, De Luca L, Ricci F, Corallo D, Aveic S, Mariotto E, Viola G, Bortolozzi R. Cinnamic acid derivatives linked to arylpiperazines as novel potent inhibitors of tyrosinase activity and melanin synthesis. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
33 Park CB, Kim GE, On J, Pyo H, Park JW, Cho SH. Sex-specific effects of bisphenol S with tissue-specific responsiveness in adult zebrafish: The antiandrogenic and antiestrogenic effects. Ecotoxicol Environ Saf 2021;229:113102. [PMID: 34942420 DOI: 10.1016/j.ecoenv.2021.113102] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Kurach Ł, Chłopaś-Konowałek A, Budzyńska B, Zawadzki M, Szpot P, Boguszewska-Czubara A. Etazene induces developmental toxicity in vivo Danio rerio and in silico studies of new synthetic opioid derivative. Sci Rep 2021;11:24269. [PMID: 34931035 DOI: 10.1038/s41598-021-03804-9] [Reference Citation Analysis]
35 Meador JP. The fish early-life stage sublethal toxicity syndrome - A high-dose baseline toxicity response. Environ Pollut 2021;291:118201. [PMID: 34740289 DOI: 10.1016/j.envpol.2021.118201] [Reference Citation Analysis]
36 Bauer B, Mally A, Liedtke D. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci 2021;22:13417. [PMID: 34948215 DOI: 10.3390/ijms222413417] [Reference Citation Analysis]
37 de Barros WA, Nunes CDS, Souza JADCR, Nascimento IJDS, Figueiredo IM, de Aquino TM, Vieira L, Farias D, Santos JCC, de Fátima Â. The new psychoactive substances 25H-NBOMe and 25H-NBOH induce abnormal development in the zebrafish embryo and interact in the DNA major groove. Curr Res Toxicol 2021;2:386-98. [PMID: 34888530 DOI: 10.1016/j.crtox.2021.11.002] [Reference Citation Analysis]
38 Tobia C, Coltrini D, Ronca R, Loda A, Guerra J, Scalvini E, Semeraro F, Rezzola S. An Orthotopic Model of Uveal Melanoma in Zebrafish Embryo: A Novel Platform for Drug Evaluation. Biomedicines 2021;9:1873. [PMID: 34944689 DOI: 10.3390/biomedicines9121873] [Reference Citation Analysis]
39 Balkrishna A, Lochab S, Joshi M, Srivastava J, Varshney A. Divya-Herbal-Peya Decoction Harmonizes the Inflammatory Response in Lipopolysaccharide-Induced Zebrafish Model. J Exp Pharmacol 2021;13:937-55. [PMID: 34880683 DOI: 10.2147/JEP.S328864] [Reference Citation Analysis]
40 Bars C, Hoyberghs J, Valenzuela A, Buyssens L, Ayuso M, Van Ginneken C, Labro AJ, Foubert K, Van Cruchten SJ. Developmental Toxicity and Biotransformation of Two Anti-Epileptics in Zebrafish Embryos and Early Larvae. Int J Mol Sci 2021;22:12696. [PMID: 34884510 DOI: 10.3390/ijms222312696] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Capatina L, Napoli EM, Ruberto G, Hritcu L. Origanum vulgare ssp. hirtum (Lamiaceae) Essential Oil Prevents Behavioral and Oxidative Stress Changes in the Scopolamine Zebrafish Model. Molecules 2021;26:7085. [PMID: 34885665 DOI: 10.3390/molecules26237085] [Reference Citation Analysis]
42 Murray KN, Clark TS, Kebus MJ, Kent ML. Specific Pathogen Free - A review of strategies in agriculture, aquaculture, and laboratory mammals and how they inform new recommendations for laboratory zebrafish. Res Vet Sci 2021;142:78-93. [PMID: 34864461 DOI: 10.1016/j.rvsc.2021.11.005] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Rudzinska-Radecka M, Janczewski Ł, Gajda A, Godlewska M, Chmielewska-Krzesinska M, Wasowicz K, Podlasz P. The Anti-Tumoral Potential of Phosphonate Analog of Sulforaphane in Zebrafish Xenograft Model. Cells 2021;10:3219. [PMID: 34831440 DOI: 10.3390/cells10113219] [Reference Citation Analysis]
44 Fontana BD, Alnassar N, Parker MO. The impact of water changes on stress and subject variation in a zebrafish (Danio rerio) anxiety-related task. J Neurosci Methods 2021;363:109347. [PMID: 34478765 DOI: 10.1016/j.jneumeth.2021.109347] [Reference Citation Analysis]
45 Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Systematic analysis of chemical-protein interactions from zebrafish embryo by proteome-wide thermal shift assay, bridging the gap between molecular interactions and toxicity pathways. J Proteomics 2021;249:104382. [PMID: 34555547 DOI: 10.1016/j.jprot.2021.104382] [Reference Citation Analysis]
46 Mauro M, Lazzara V, Arizza V, Luparello C, Ferrantelli V, Cammilleri G, Inguglia L, Vazzana M. Human Drug Pollution in the Aquatic System: The Biochemical Responses of Danio rerio Adults. Biology (Basel) 2021;10:1064. [PMID: 34681162 DOI: 10.3390/biology10101064] [Reference Citation Analysis]
47 Naomi R, Bahari H, Yazid MD, Embong H, Othman F. Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel) 2021;14:1058. [PMID: 34681282 DOI: 10.3390/ph14101058] [Reference Citation Analysis]
48 Fontana BD, Alnassar N, Parker MO. The zebrafish (Danio rerio) anxiety test battery: comparison of behavioral responses in the novel tank diving and light-dark tasks following exposure to anxiogenic and anxiolytic compounds. Psychopharmacology (Berl) 2021. [PMID: 34651212 DOI: 10.1007/s00213-021-05990-w] [Reference Citation Analysis]
49 Pavic A, Ilic-Tomic T, Glamočlija J. Unravelling Anti-Melanogenic Potency of Edible Mushrooms Laetiporus sulphureus and Agaricus silvaticus In Vivo Using the Zebrafish Model. J Fungi (Basel) 2021;7:834. [PMID: 34682255 DOI: 10.3390/jof7100834] [Reference Citation Analysis]
50 Ryan RT, Havrylyuk D, Stevens KC, Moore LH, Parkin S, Blackburn JS, Heidary DK, Selegue JP, Glazer EC. Biological Investigations of Ru(II) Complexes With Diverse β-diketone Ligands. Eur J Inorg Chem 2021;2021:3611-21. [PMID: 34539235 DOI: 10.1002/ejic.202100468] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Dickinson AJG, Turner SD, Wahl S, Kennedy AE, Wyatt BH, Howton DA. E-liquids and vanillin flavoring disrupts retinoic acid signaling and causes craniofacial defects in Xenopus embryos. Dev Biol 2021;481:14-29. [PMID: 34543654 DOI: 10.1016/j.ydbio.2021.09.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
52 Sharma S, Rana AK, Sharma A, Singh D. Inhibition of Mammalian Target of Rapamycin Attenuates Recurrent Seizures Associated Cardiac Damage in a Zebrafish Kindling Model of Chronic Epilepsy. J Neuroimmune Pharmacol 2021. [PMID: 34537895 DOI: 10.1007/s11481-021-10021-8] [Reference Citation Analysis]
53 Chen W, Shen J, Wang Z, Liu X, Xu Y, Zhao H, Astruc D. Turning waste into wealth: facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging. Chem Sci 2021;12:11722-9. [PMID: 34659707 DOI: 10.1039/d1sc02837e] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
54 Kalyn M, Ekker M. Cerebroventricular Microinjections of MPTP on Adult Zebrafish Induces Dopaminergic Neuronal Death, Mitochondrial Fragmentation, and Sensorimotor Impairments. Front Neurosci 2021;15:718244. [PMID: 34512252 DOI: 10.3389/fnins.2021.718244] [Reference Citation Analysis]
55 Damodaran T, Chear NJ, Murugaiyah V, Mordi MN, Ramanathan S. Comparative Toxicity Assessment of Kratom Decoction, Mitragynine and Speciociliatine Versus Morphine on Zebrafish (Danio rerio) Embryos. Front Pharmacol 2021;12:714918. [PMID: 34489704 DOI: 10.3389/fphar.2021.714918] [Reference Citation Analysis]
56 Ramdas Nair A, Delaney P, Koomson AA, Ranjan S, Sadler KC. Systematic Evaluation of the Effects of Toxicant Exposure on Survival in Zebrafish Embryos and Larvae. Curr Protoc 2021;1:e231. [PMID: 34491623 DOI: 10.1002/cpz1.231] [Reference Citation Analysis]
57 Hermanowicz JM, Kalaska B, Pawlak K, Sieklucka B, Miklosz J, Mojzych M, Pawlak D. Preclinical Toxicity and Safety of MM-129-First-in-Class BTK/PD-L1 Inhibitor as a Potential Candidate against Colon Cancer. Pharmaceutics 2021;13:1222. [PMID: 34452183 DOI: 10.3390/pharmaceutics13081222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Ericsson AC, Busi SB, Davis DJ, Nabli H, Eckhoff DC, Dorfmeyer RA, Turner G, Oswalt PS, Crim MJ, Bryda EC. Molecular and culture-based assessment of the microbiome in a zebrafish (Danio rerio) housing system during set-up and equilibration. Anim Microbiome 2021;3:55. [PMID: 34353374 DOI: 10.1186/s42523-021-00116-1] [Reference Citation Analysis]
59 Yang NJ, Liu YR, Tang ZS, Duan JA, Yan YF, Song ZX, Wang MG, Zhang YR, Chang BJ, Zhao ML, Zhao YT. Poria cum Radix Pini Rescues Barium Chloride-Induced Arrhythmia by Regulating the cGMP-PKG Signalling Pathway Involving ADORA1 in Zebrafish. Front Pharmacol 2021;12:688746. [PMID: 34393777 DOI: 10.3389/fphar.2021.688746] [Reference Citation Analysis]
60 Hong Y, Luo Y. Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery. Pharmaceuticals (Basel) 2021;14:716. [PMID: 34451814 DOI: 10.3390/ph14080716] [Reference Citation Analysis]
61 Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Demin KA, Zabegalov KN, Strekalova T, de Abreu MS, Petersen EV, Kalueff AV. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses. Prog Neuropsychopharmacol Biol Psychiatry 2021;112:110405. [PMID: 34320403 DOI: 10.1016/j.pnpbp.2021.110405] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
62 Hedde PN. miniSPIM-A Miniaturized Light-Sheet Microscope. ACS Sens 2021;6:2654-63. [PMID: 34197085 DOI: 10.1021/acssensors.1c00607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021;13:3651. [PMID: 34359553 DOI: 10.3390/cancers13153651] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
64 Subendran S, Wang YC, Lu YH, Chen CY. The evaluation of zebrafish cardiovascular and behavioral functions through microfluidics. Sci Rep 2021;11:13801. [PMID: 34226579 DOI: 10.1038/s41598-021-93078-y] [Reference Citation Analysis]
65 Nam YH, Rodriguez I, Shin SW, Shim JH, Kim NW, Kim MC, Jeong SY, Nuankaew W, Hong BN, Kim H, Kang TH. Characteristics of the New Insulin-Resistant Zebrafish Model. Pharmaceuticals (Basel) 2021;14:642. [PMID: 34358068 DOI: 10.3390/ph14070642] [Reference Citation Analysis]
66 Asslan M, Lauzon N, Beus M, Maysinger D, Rousseau S. Mass spectrometry imaging in zebrafish larvae for assessing drug safety and metabolism. Anal Bioanal Chem 2021. [PMID: 34173039 DOI: 10.1007/s00216-021-03476-4] [Reference Citation Analysis]
67 Weitekamp CA, Hofmann HA. Effects of air pollution exposure on social behavior: a synthesis and call for research. Environ Health 2021;20:72. [PMID: 34187479 DOI: 10.1186/s12940-021-00761-8] [Reference Citation Analysis]
68 Bala Subramaniyan S, Ramesh S, Rajendran S, Veerappan A. Dual Function Antimicrobial Loaded Lectin Carrier: A Strategy to Overcome Biomolecular Interference without Detectable Resistance. Bioconjug Chem 2021. [PMID: 34161072 DOI: 10.1021/acs.bioconjchem.1c00281] [Reference Citation Analysis]
69 Rasheed S, Fries F, Müller R, Herrmann J. Zebrafish: An Attractive Model to Study Staphylococcus aureus Infection and Its Use as a Drug Discovery Tool. Pharmaceuticals (Basel) 2021;14:594. [PMID: 34205723 DOI: 10.3390/ph14060594] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
70 Jijie R, Mihalache G, Balmus IM, Strungaru SA, Baltag ES, Ciobica A, Nicoara M, Faggio C. Zebrafish as a Screening Model to Study the Single and Joint Effects of Antibiotics. Pharmaceuticals (Basel) 2021;14:578. [PMID: 34204339 DOI: 10.3390/ph14060578] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
71 Renauld JM, Basch ML. Congenital Deafness and Recent Advances Towards Restoring Hearing Loss. Curr Protoc 2021;1:e76. [PMID: 33780161 DOI: 10.1002/cpz1.76] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 2021;20:611-28. [PMID: 34117457 DOI: 10.1038/s41573-021-00210-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
73 Hoffmann S, Marigliani B, Akgün-Ölmez SG, Ireland D, Cruz R, Busquet F, Flick B, Lalu M, Ghandakly EC, de Vries RBM, Witters H, Wright RA, Ölmez M, Willett C, Hartung T, Stephens ML, Tsaioun K. A systematic review to compare chemical hazard predictions of the zebrafish embryotoxicity test with mammalian prenatal developmental toxicity. Toxicol Sci 2021:kfab072. [PMID: 34109416 DOI: 10.1093/toxsci/kfab072] [Reference Citation Analysis]
74 Huang X, Tang F, Hua Y, Li X. In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods. Chem Biol Drug Des 2021;98:248-57. [PMID: 34013639 DOI: 10.1111/cbdd.13894] [Reference Citation Analysis]
75 Lin X, Tang J, Lou YR. Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals (Basel) 2021;14:525. [PMID: 34070895 DOI: 10.3390/ph14060525] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
76 Dubińska-Magiera M, Migocka-Patrzałek M, Lewandowski D, Daczewska M, Jagla K. Zebrafish as a Model for the Study of Lipid-Lowering Drug-Induced Myopathies. Int J Mol Sci 2021;22:5654. [PMID: 34073503 DOI: 10.3390/ijms22115654] [Reference Citation Analysis]
77 Middel CS, Hammes HP, Kroll J. Advancing Diabetic Retinopathy Research: Analysis of the Neurovascular Unit in Zebrafish. Cells 2021;10:1313. [PMID: 34070439 DOI: 10.3390/cells10061313] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
78 Bradley PM, Padilla IY, Romanok KM, Smalling KL, Focazio MJ, Breitmeyer SE, Cardon MC, Conley JM, Evans N, Givens CE, Gray JL, Gray LE, Hartig PC, Higgins CP, Hladik ML, Iwanowicz LR, Lane RF, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meppelink S, Weis CP, Wilson VS. Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. Sci Total Environ 2021;788:147721. [PMID: 34134358 DOI: 10.1016/j.scitotenv.2021.147721] [Reference Citation Analysis]
79 Winter MJ, Pinion J, Tochwin A, Takesono A, Ball JS, Grabowski P, Metz J, Trznadel M, Tse K, Redfern WS, Hetheridge MJ, Goodfellow M, Randall AD, Tyler CR. Functional brain imaging in larval zebrafish for characterising the effects of seizurogenic compounds acting via a range of pharmacological mechanisms. Br J Pharmacol 2021;178:2671-89. [PMID: 33768524 DOI: 10.1111/bph.15458] [Reference Citation Analysis]
80 Aspatwar A, Berrino E, Bua S, Carta F, Capasso C, Parkkila S, Supuran CT. Toxicity evaluation of sulfamides and coumarins that efficiently inhibit human carbonic anhydrases. J Enzyme Inhib Med Chem 2020;35:1765-72. [PMID: 32942905 DOI: 10.1080/14756366.2020.1822829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Xia Q, Gao S, Rapael Gnanamuthu SR, Zhuang K, Song Z, Zhang Y, Wang X, Tu P, Li J, Liu K. Involvement of Nrf2-HO-1/JNK-Erk Signaling Pathways in Aconitine-Induced Developmental Toxicity, Oxidative Stress, and ROS-Mitochondrial Apoptosis in Zebrafish Embryos. Front Pharmacol 2021;12:642480. [PMID: 33967776 DOI: 10.3389/fphar.2021.642480] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Raas Q, van de Beek MC, Forss-Petter S, Dijkstra IM, Deschiffart A, Freshner BC, Stevenson TJ, Jaspers YR, Nagtzaam L, Wanders RJ, van Weeghel M, Engelen-Lee JY, Engelen M, Eichler F, Berger J, Bonkowsky JL, Kemp S. Metabolic rerouting via SCD1 induction impacts X-linked adrenoleukodystrophy. J Clin Invest 2021;131:142500. [PMID: 33690217 DOI: 10.1172/JCI142500] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
83 James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021;9:662916. [PMID: 33937265 DOI: 10.3389/fcell.2021.662916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Migocka-Patrzałek M, Elias M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 2021;10:883. [PMID: 33924466 DOI: 10.3390/cells10040883] [Reference Citation Analysis]
85 Park H, Song G, Lim W. Isoprocarb induces acute toxicity in developing zebrafish embryos through vascular malformation. J Anim Reprod Biotechnol 2021;36:17-24. [DOI: 10.12750/jarb.36.1.17] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2021. [PMID: 33788282 DOI: 10.1111/bph.15473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Suryanto ME, Audira G, Uapipatanakul B, Hussain A, Saputra F, Siregar P, Chen KH, Hsiao CD. Antidepressant Screening Demonstrated Non-Monotonic Responses to Amitriptyline, Amoxapine and Sertraline in Locomotor Activity Assay in Larval Zebrafish. Cells 2021;10:738. [PMID: 33810553 DOI: 10.3390/cells10040738] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
88 Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. Biology (Basel) 2021;10:252. [PMID: 33804830 DOI: 10.3390/biology10040252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Licitra R, Marchese M, Brogi L, Fronte B, Pitto L, Santorelli FM. Nutraceutical Screening in a Zebrafish Model of Muscular Dystrophy: Gingerol as a Possible Food Aid. Nutrients 2021;13:998. [PMID: 33808773 DOI: 10.3390/nu13030998] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
90 de F Cesário HPS, Silva FCO, Ferreira MKA, de Menezes JESA, Dos Santos HS, Nogueira CES, de L Silva KSB, Hajdu E, Silveira ER, Pessoa ODL. Anxiolytic-like effect of brominated compounds from the marine sponge Aplysina fulva on adult zebrafish (Danio rerio): Involvement of the GABAergic system. Neurochem Int 2021;146:105021. [PMID: 33741413 DOI: 10.1016/j.neuint.2021.105021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Czimer D, Porok K, Csete D, Gyüre Z, Lavró V, Fülöp K, Chen Z, Gyergyák H, Tusnády GE, Burgess SM, Mócsai A, Váradi A, Varga M. A New Zebrafish Model for Pseudoxanthoma Elasticum. Front Cell Dev Biol 2021;9:628699. [PMID: 33768091 DOI: 10.3389/fcell.2021.628699] [Reference Citation Analysis]
92 Sandner G, König A, Wallner M, Weghuber J. Alternative model organisms for toxicological fingerprinting of relevant parameters in food and nutrition. Crit Rev Food Sci Nutr 2021;:1-18. [PMID: 33683153 DOI: 10.1080/10408398.2021.1895060] [Reference Citation Analysis]
93 Lai Y, Tan Q, Xv S, Huang S, Wang Y, Li Y, Zeng T, Mo C, Chen Y, Huang S, Zhou C, Gao L, Lv Z. Ginsenoside Rb1 Alleviates Alcohol-Induced Liver Injury by Inhibiting Steatosis, Oxidative Stress, and Inflammation. Front Pharmacol 2021;12:616409. [PMID: 33716743 DOI: 10.3389/fphar.2021.616409] [Reference Citation Analysis]
94 Markin PA, Brito A, Moskaleva NE, Tagliaro F, Tarasov VV, La Frano MR, Savitskii MV, Appolonova SA. Short- and medium-term exposures of diazepam induce metabolomic alterations associated with the serotonergic, dopaminergic, adrenergic and aspartic acid neurotransmitter systems in zebrafish (Danio rerio) embryos/larvae. Comp Biochem Physiol Part D Genomics Proteomics 2021;38:100816. [PMID: 33610025 DOI: 10.1016/j.cbd.2021.100816] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Reference Citation Analysis]
96 Hassinen M, Dzhumaniiazova I, Abramochkin DV, Vornanen M. Ionic basis of atrioventricular conduction: ion channel expression and sarcolemmal ion currents of the atrioventricular canal of the rainbow trout (Oncorhynchus mykiss) heart. J Comp Physiol B 2021;191:327-46. [PMID: 33575867 DOI: 10.1007/s00360-021-01344-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
97 Markin PA, Brito A, Moskaleva NE, Tagliaro F, La Frano MR, Savitskii MV, Appolonova SA. Short- and long-term exposures of the synthetic cannabinoid 5F-APINAC induce metabolomic alterations associated with neurotransmitter systems and embryotoxicity confirmed by teratogenicity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021;243:109000. [PMID: 33561556 DOI: 10.1016/j.cbpc.2021.109000] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
98 Lee Y, Yang J. Development of a zebrafish screening model for diabetic retinopathy induced by hyperglycemia: Reproducibility verification in animal model. Biomed Pharmacother 2021;135:111201. [PMID: 33421732 DOI: 10.1016/j.biopha.2020.111201] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. Environ Toxicol Chem 2021;40:989-1006. [PMID: 33270929 DOI: 10.1002/etc.4951] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
100 Burbano-L DA, Porfiri M. Modeling multi-sensory feedback control of zebrafish in a flow. PLoS Comput Biol 2021;17:e1008644. [PMID: 33481795 DOI: 10.1371/journal.pcbi.1008644] [Reference Citation Analysis]
101 Lane S, More LA, Asnani A. Zebrafish Models of Cancer Therapy-Induced Cardiovascular Toxicity. J Cardiovasc Dev Dis 2021;8:8. [PMID: 33499052 DOI: 10.3390/jcdd8020008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Khan MF, Alqahtani AS, Almarfadi OM, Ullah R, Nasr FA, Noman OM, Siddiqui NA, Shahat AA, Ahamad SR. The Reproductive Toxicity Associated with Dodonaea viscosa, a Folk Medicinal Plant in Saudi Arabia. Evid Based Complement Alternat Med 2021;2021:6689110. [PMID: 33510808 DOI: 10.1155/2021/6689110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Echeazarra L, Hortigón-Vinagre MP, Casis O, Gallego M. Adult and Developing Zebrafish as Suitable Models for Cardiac Electrophysiology and Pathology in Research and Industry. Front Physiol 2020;11:607860. [PMID: 33519514 DOI: 10.3389/fphys.2020.607860] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
104 Subendran S, Kang CW, Chen CY. Comprehensive Hydrodynamic Investigation of Zebrafish Tail Beats in a Microfluidic Device with a Shape Memory Alloy. Micromachines (Basel) 2021;12:68. [PMID: 33435330 DOI: 10.3390/mi12010068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Sztanke M, Rzymowska J, Sztanke K. Anticancer active trifluoromethylated fused triazinones are safe for early-life stages of zebrafish (Danio rerio) and reveal a proapoptotic action. J Enzyme Inhib Med Chem 2021;36:336-44. [PMID: 33390035 DOI: 10.1080/14756366.2020.1865944] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Liu X, Hou W, Meng X, Bi X, Zhao H, Wang Z, Astruc D. Degradation of tetracycline over carbon nanosheet: high efficiency, mechanism and biotoxicity assessment. Environ Sci : Nano 2021;8:3762-73. [DOI: 10.1039/d1en00841b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
107 Ka J, Jin SW. Zebrafish as an Emerging Model for Dyslipidemia and Associated Diseases. J Lipid Atheroscler 2021;10:42-56. [PMID: 33537252 DOI: 10.12997/jla.2021.10.1.42] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Gandhirajan RK, Endlich N, Bekeschus S. Zebrafish larvae as a toxicity model in plasma medicine. Plasma Process Polym 2021;18:2000188. [DOI: 10.1002/ppap.202000188] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Jia M, Teng M, Tian S, Yan J, Meng Z, Yan S, Li R, Zhou Z, Zhu W. Developmental toxicity and neurotoxicity of penconazole enantiomers exposure on zebrafish (Danio rerio). Environmental Pollution 2020;267:115450. [DOI: 10.1016/j.envpol.2020.115450] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
110 Leonel AG, Mansur AAP, Mansur HS. Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review. Water Res 2021;190:116693. [PMID: 33302040 DOI: 10.1016/j.watres.2020.116693] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
111 Syed Azhar SNA, Ashari SE, Ahmad S, Salim N. In vitro kinetic release study, antimicrobial activity and in vivo toxicity profile of a kojic acid ester-based nanoemulsion for topical application. RSC Adv 2020;10:43894-903. [PMID: 35519703 DOI: 10.1039/d0ra04807k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Hung GY, Chen PY, Horng JL, Lin LY. Vincristine exposure impairs skin keratinocytes, ionocytes, and lateral-line hair cells in developing zebrafish embryos. Aquat Toxicol 2021;230:105703. [PMID: 33249295 DOI: 10.1016/j.aquatox.2020.105703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
113 Kounde CS, Tate EW. Photoactive Bifunctional Degraders: Precision Tools To Regulate Protein Stability. J Med Chem 2020;63:15483-93. [PMID: 33226810 DOI: 10.1021/acs.jmedchem.0c01542] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
114 Pensado-López A, Veiga-Rúa S, Carracedo Á, Allegue C, Sánchez L. Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes (Basel) 2020;11:E1376. [PMID: 33233737 DOI: 10.3390/genes11111376] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
115 Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2021;49:438-54. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
116 Wilson LB, Truong L, Simonich MT, Tanguay RL. Systematic Assessment of Exposure Variations on Observed Bioactivity in Zebrafish Chemical Screening. Toxics 2020;8:E87. [PMID: 33066419 DOI: 10.3390/toxics8040087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
117 Chahardehi AM, Arsad H, Lim V. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants (Basel) 2020;9:E1345. [PMID: 33053800 DOI: 10.3390/plants9101345] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
118 Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SM. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. Environ Pollut 2021;271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
119 Ryan RT, Havrylyuk D, Stevens KC, Moore LH, Kim DY, Blackburn JS, Heidary DK, Selegue JP, Glazer EC. Avobenzone incorporation in a diverse range of Ru(II) scaffolds produces potent potential antineoplastic agents. Dalton Trans 2020;49:12161-7. [PMID: 32845256 DOI: 10.1039/d0dt02016h] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
120 Wang W, Xiong J, Song X, Wang Z, Zhang F, Mao Z. Activatable Two-Photon Near-Infrared Fluorescent Probe Tailored toward Peroxynitrite In Vivo Imaging in Tumors. Anal Chem 2020;92:13305-12. [DOI: 10.1021/acs.analchem.0c02587] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
121 Santoso F, Farhan A, Castillo AL, Malhotra N, Saputra F, Kurnia KA, Chen KH, Huang JC, Chen JR, Hsiao CD. An Overview of Methods for Cardiac Rhythm Detection in Zebrafish. Biomedicines 2020;8:E329. [PMID: 32899676 DOI: 10.3390/biomedicines8090329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
122 Sahoo PK, Pradhan LK, Aparna S, Agarwal K, Banerjee A, Das SK. Quercetin abrogates bisphenol A induced altered neurobehavioral response and oxidative stress in zebrafish by modulating brain antioxidant defence system. Environ Toxicol Pharmacol 2020;80:103483. [PMID: 32866630 DOI: 10.1016/j.etap.2020.103483] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
123 Fabian L, Dowling JJ. Zebrafish Models of LAMA2-Related Congenital Muscular Dystrophy (MDC1A). Front Mol Neurosci 2020;13:122. [PMID: 32742259 DOI: 10.3389/fnmol.2020.00122] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
124 Cunha RLDD, de Brito-Gitirana L. Effects of titanium dioxide nanoparticles on the intestine, liver, and kidney of Danio rerio. Ecotoxicol Environ Saf 2020;203:111032. [PMID: 32745774 DOI: 10.1016/j.ecoenv.2020.111032] [Reference Citation Analysis]
125 Mohd Sakeh N, Md Razip NN, Mohd Ma'in FI, Abdul Bahari MN, Latif N, Akhtar MN, Balia Yusof ZN, Ahmad S. Melanogenic Inhibition and Toxicity Assessment of Flavokawain A and B on B16/F10 Melanoma Cells and Zebrafish (Danio rerio). Molecules 2020;25:E3403. [PMID: 32731323 DOI: 10.3390/molecules25153403] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Kwon YS, Jung JW, Kim YJ, Park CB, Shon JC, Kim JH, Park JW, Kim SG, Seo JS. Proteomic analysis of whole-body responses in medaka (Oryzias latipes) exposed to benzalkonium chloride. J Environ Sci Health A Tox Hazard Subst Environ Eng 2020;55:1387-97. [PMID: 32693679 DOI: 10.1080/10934529.2020.1796117] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
127 Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020;7:109. [PMID: 32714944 DOI: 10.3389/fcvm.2020.00109] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
128 Tal T, Yaghoobi B, Lein PJ. Translational Toxicology in Zebrafish. Curr Opin Toxicol 2020;23-24:56-66. [PMID: 32656393 DOI: 10.1016/j.cotox.2020.05.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
129 Steenbergen PJ, Heigwer J, Pandey G, Tönshoff B, Gehrig J, Westhoff JH. A Multiparametric Assay Platform for Simultaneous In Vivo Assessment of Pronephric Morphology, Renal Function and Heart Rate in Larval Zebrafish. Cells 2020;9:E1269. [PMID: 32443839 DOI: 10.3390/cells9051269] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
130 Ahkin Chin Tai JK, Freeman JL. Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep 2020;7:559-70. [PMID: 32373477 DOI: 10.1016/j.toxrep.2020.03.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]