BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bao Y, Boissenot T, Guégain E, Desmaële D, Mura S, Couvreur P, Nicolas J. Simple Synthesis of Cladribine-Based Anticancer Polymer Prodrug Nanoparticles with Tunable Drug Delivery Properties. Chem Mater 2016;28:6266-75. [DOI: 10.1021/acs.chemmater.6b02502] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Hosseinzadeh E, Foroumadi A, Firoozpour L. A DFT study on the transition metal doped BN and AlN nanocages as a drug delivery vehicle for the cladribine drug. Journal of Molecular Liquids 2023. [DOI: 10.1016/j.molliq.2023.121262] [Reference Citation Analysis]
2 Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of cytochrome P450, a family of xenobiotic metabolizing enzymes, in cancer therapy. Antioxid Redox Signal 2022. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Reference Citation Analysis]
3 Bordat A, Boissenot T, Ibrahim N, Ferrere M, Levêque M, Potiron L, Denis S, Garcia-Argote S, Carvalho O, Abadie J, Cailleau C, Pieters G, Tsapis N, Nicolas J. A Polymer Prodrug Strategy to Switch from Intravenous to Subcutaneous Cancer Therapy for Irritant/Vesicant Drugs. J Am Chem Soc 2022. [PMID: 36193551 DOI: 10.1021/jacs.2c04944] [Reference Citation Analysis]
4 Lefay C, Morris JC, Lin A, Guillaneuf Y, Gigmes D. Living/Controlled Radical Polymerization: Nitroxide‐mediated Polymerization. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0015] [Reference Citation Analysis]
5 Kaur M, Kaur M, Bandopadhyay T, Sharma A, Priya A, Singh A, Banerjee B. Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs. Physical Sciences Reviews 2022;0. [DOI: 10.1515/psr-2022-0003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Gao P, Nicolas J, Ha-Duong T. Supramolecular Organization of Polymer Prodrug Nanoparticles Revealed by Coarse-Grained Simulations. J Am Chem Soc 2021;143:17412-23. [PMID: 34644073 DOI: 10.1021/jacs.1c05332] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
7 Lamontagne HR, Lessard BH. Nitroxide-Mediated Polymerization: A Versatile Tool for the Engineering of Next Generation Materials. ACS Appl Polym Mater 2020;2:5327-44. [DOI: 10.1021/acsapm.0c00888] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
8 Schmidt AC, Hebels ER, Weitzel C, Stoessel B, Bao Y, Altmann KH, Leroux JC. Ammonia uptake by transmembrane pH gradient poly(isoprene)-block-poly(ethylene glycol) polymersomes. Soft Matter 2020;16:2725-35. [PMID: 32115597 DOI: 10.1039/d0sm00183j] [Reference Citation Analysis]
9 Wang T, Zhang N, Bai W, Bao Y. Fluorescent chemosensors based on conjugated polymers with N-heterocyclic moieties: two decades of progress. Polym Chem 2020;11:3095-114. [DOI: 10.1039/d0py00336k] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 14.7] [Reference Citation Analysis]
10 Khong J, Wang P, Gan TR, Ng J, Lan Anh TT, Blasiak A, Kee T, Ho D. The role of artificial intelligence in scaling nanomedicine toward broad clinical impact. Nanoparticles for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816662-8.00022-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
11 Cox A, Vinciguerra D, Re F, Magro RD, Mura S, Masserini M, Couvreur P, Nicolas J. Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. Eur J Pharm Biopharm 2019;142:70-82. [PMID: 31176723 DOI: 10.1016/j.ejpb.2019.06.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
12 Vinciguerra D, Degrassi A, Mancini L, Mura S, Mougin J, Couvreur P, Nicolas J. Drug-Initiated Synthesis of Heterotelechelic Polymer Prodrug Nanoparticles for in Vivo Imaging and Cancer Cell Targeting. Biomacromolecules 2019;20:2464-76. [DOI: 10.1021/acs.biomac.9b00148] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
13 Zhang H, Zhou T, Yu Q, Yang Z, Sun Y, Cai Z, Cang H. pH-Sensitive betulinic acid polymer prodrug nanoparticles for efficient and targeted cancer cells treatment. International Journal of Polymeric Materials and Polymeric Biomaterials 2020;69:659-68. [DOI: 10.1080/00914037.2019.1596916] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
14 Vinciguerra D, Jacobs M, Denis S, Mougin J, Guillaneuf Y, Lazzari G, Zhu C, Mura S, Couvreur P, Nicolas J. Heterotelechelic polymer prodrug nanoparticles: Adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity. Journal of Controlled Release 2019;295:223-36. [DOI: 10.1016/j.jconrel.2018.12.047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
15 Vinciguerra D, Denis S, Mougin J, Jacobs M, Guillaneuf Y, Mura S, Couvreur P, Nicolas J. A facile route to heterotelechelic polymer prodrug nanoparticles for imaging, drug delivery and combination therapy. Journal of Controlled Release 2018;286:425-38. [DOI: 10.1016/j.jconrel.2018.08.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
16 Xu C, Qiu L, Pan C, Hong C, Hao Z. Efficient Synthesis of Polymer Prodrug by Thiol–Acrylate Michael Addition Reaction and Fabrication of pH-Responsive Prodrug Nanoparticles. Bioconjugate Chem 2018;29:3203-12. [DOI: 10.1021/acs.bioconjchem.8b00531] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
17 Wang B, Wen A, Feng C, Niu L, Xiao X, Luo L, Shen C, Zhu J, Lei J, Zhang X. The in vivo anti-fibrotic function of calcium sensitive receptor (CaSR) modulating poly(p-dioxanone-co-l-phenylalanine) prodrug. Acta Biomater 2018;73:180-9. [PMID: 29660510 DOI: 10.1016/j.actbio.2018.04.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
18 Bao Y, Guégain E, Nicolas V, Nicolas J. Fluorescent polymer prodrug nanoparticles with aggregation-induced emission (AIE) properties from nitroxide-mediated polymerization. Chem Commun (Camb) 2017;53:4489-92. [PMID: 28382332 DOI: 10.1039/c6cc09052d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 9.0] [Reference Citation Analysis]
19 Bao Y, Guégain E, Mougin J, Nicolas J. Self-stabilized, hydrophobic or PEGylated paclitaxel polymer prodrug nanoparticles for cancer therapy. Polym Chem 2018;9:687-98. [DOI: 10.1039/c7py01918a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
20 Bao Y, Guégain E, Nicolas J. Drug-Initiated Synthesis of Cladribine-Based Polymer Prodrug Nanoparticles: Biological Evaluation and Structure Activity Relationships. ACS Symposium Series 2018. [DOI: 10.1021/bk-2018-1285.ch011] [Reference Citation Analysis]
21 Vinciguerra D, Tran J, Nicolas J. Telechelic polymers from reversible-deactivation radical polymerization for biomedical applications. Chem Commun 2018;54:228-40. [DOI: 10.1039/c7cc08544c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
22 Bao Y, Nicolas J. Structure–cytotoxicity relationship of drug-initiated polymer prodrug nanoparticles. Polym Chem 2017;8:5174-84. [DOI: 10.1039/c7py00536a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]