1 |
Fayyazbakhsh A, Koutný M, Kalendová A, Šašinková D, Julinová M, Kadlečková M. Selected Simple Natural Antimicrobial Terpenoids as Additives to Control Biodegradation of Polyhydroxy Butyrate. Int J Mol Sci 2022;23. [PMID: 36430556 DOI: 10.3390/ijms232214079] [Reference Citation Analysis]
|
2 |
Comini S, Scutera S, Sparti R, Banche G, Coppola B, Bertea CM, Bianco G, Gatti N, Cuffini AM, Palmero P, Allizond V. Combination of Poly(ε-Caprolactone) Biomaterials and Essential Oils to Achieve Anti-Bacterial and Osteo-Proliferative Properties for 3D-Scaffolds in Regenerative Medicine. Pharmaceutics 2022;14:1873. [DOI: 10.3390/pharmaceutics14091873] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
3 |
Shao Z, Wulandari E, Lin RCY, Xu J, Liang K, Wong EHH. Two plus One: Combination Therapy Tri-systems Involving Two Membrane-Disrupting Antimicrobial Macromolecules and Antibiotics. ACS Infect Dis 2022;8:1480-90. [PMID: 35771275 DOI: 10.1021/acsinfecdis.2c00087] [Reference Citation Analysis]
|
4 |
Samuel MS, Moghaddam ST, Shang M, Niu J. A Flexible Anti-Biofilm Hygiene Coating for Water Devices. ACS Appl Bio Mater 2022. [PMID: 35912797 DOI: 10.1021/acsabm.2c00538] [Reference Citation Analysis]
|
5 |
Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS Appl Bio Mater 2022. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
|
6 |
Zhou L, Lei D, Wang Q, Ouyang Y, Luo X. Rational Design of Polyphosphorylcholine‐Based Micelles for Superior Anti‐Biofilm Activity. Macro Materials & Eng. [DOI: 10.1002/mame.202100806] [Reference Citation Analysis]
|
7 |
Ntow-Boahene W, Cook D, Good L. Antifungal Polymeric Materials and Nanocomposites. Front Bioeng Biotechnol 2021;9:780328. [PMID: 35004642 DOI: 10.3389/fbioe.2021.780328] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Das K, Singh V, Gardas RL. Cationic Amphiphilic Molecules as Bactericidal Agents. Alternatives to Antibiotics 2022. [DOI: 10.1007/978-981-19-1854-4_11] [Reference Citation Analysis]
|
9 |
Gharibi R, Teimouri MB, Safavian S. Biocidal organic-inorganic urethane-siloxane coating by facile polymerization of single component soy-based prepolymer. Surface and Coatings Technology 2022;429:127925. [DOI: 10.1016/j.surfcoat.2021.127925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Misin VM, Zezin AA, Klimov DI, Sybachin AV, Yaroslavov AA. Biocidal Polymer Formulations and Coatings. Polym Sci Ser B 2021;63:459-69. [DOI: 10.1134/s1560090421050079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Ma J, Hou S, Chan-Park MB, Duan H. Antibiofilm Activity of Gallium(III) Complexed Anionic Polymers in Combination with Antibiotics. Macromol Rapid Commun 2021;42:e2100255. [PMID: 34418208 DOI: 10.1002/marc.202100255] [Reference Citation Analysis]
|
12 |
Tewabe A, Marew T, Birhanu G. The contribution of nano-based strategies in overcoming ceftriaxone resistance: a literature review. Pharmacol Res Perspect 2021;9:e00849. [PMID: 34331383 DOI: 10.1002/prp2.849] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
13 |
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021;50:1587-616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 18.0] [Reference Citation Analysis]
|
14 |
Vishwakarma A, Dang F, Ferrell A, Barton HA, Joy A. Peptidomimetic Polyurethanes Inhibit Bacterial Biofilm Formation and Disrupt Surface Established Biofilms. J Am Chem Soc 2021. [PMID: 34133169 DOI: 10.1021/jacs.1c02324] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 16.5] [Reference Citation Analysis]
|
15 |
Gafur A, Sukamdani GY, Kristi N, Maruf A, Xu J, Chen X, Wang G, Ye Z. From bulk to nano-delivery of essential phytochemicals: recent progress and strategies for antibacterial resistance. J Mater Chem B 2020;8:9825-35. [PMID: 33000844 DOI: 10.1039/d0tb01671c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
16 |
Luo H, Yin XQ, Tan PF, Gu ZP, Liu ZM, Tan L. Polymeric antibacterial materials: design, platforms and applications. J Mater Chem B 2021;9:2802-15. [PMID: 33710247 DOI: 10.1039/d1tb00109d] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
|
17 |
Bi Y, Xia G, Shi C, Wan J, Liu L, Chen Y, Wu Y, Zhang W, Zhou M, He H, Liu R. Therapeutic strategies against bacterial biofilms. Fundamental Research 2021;1:193-212. [DOI: 10.1016/j.fmre.2021.02.003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 16.0] [Reference Citation Analysis]
|
18 |
Namivandi-Zangeneh R, Wong EHH, Boyer C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect Dis 2021;7:215-53. [PMID: 33433995 DOI: 10.1021/acsinfecdis.0c00635] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 20.5] [Reference Citation Analysis]
|
19 |
Pham P, Oliver S, Wong EHH, Boyer C. Effect of hydrophilic groups on the bioactivity of antimicrobial polymers. Polym Chem 2021;12:5689-703. [DOI: 10.1039/d1py01075a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel) 2020;10:3. [PMID: 33374551 DOI: 10.3390/antibiotics10010003] [Cited by in Crossref: 61] [Cited by in F6Publishing: 68] [Article Influence: 20.3] [Reference Citation Analysis]
|
21 |
Acaroğlu Degitz İ, Hakkı Gazioğlu B, Burak Aksu M, Malta S, Demir Sezer A, Eren T. Antibacterial and hemolytic activity of cationic polymer-vancomycin conjugates. European Polymer Journal 2020;141:110084. [DOI: 10.1016/j.eurpolymj.2020.110084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Cano A, Ettcheto M, Espina M, López-Machado A, Cajal Y, Rabanal F, Sánchez-López E, Camins A, García ML, Souto EB. State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections. J Nanobiotechnology 2020;18:156. [PMID: 33129333 DOI: 10.1186/s12951-020-00714-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
|
23 |
Cavitt TB, Carlisle JG, Dodds AR, Faulkner RA, Garfield TC, Ghebranious VN, Hendley PR, Henry EB, Holt CJ, Lowe JR, Lowry JA, Oskin DS, Patel PR, Smith D, Wei W. Thermodynamic Surface Analyses to Inform Biofilm Resistance. iScience 2020;23:101702. [PMID: 33205020 DOI: 10.1016/j.isci.2020.101702] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
24 |
Albertsson A, Percec S. Future of Biomacromolecules at a Crossroads of Polymer Science and Biology. Biomacromolecules 2020;21:1-6. [DOI: 10.1021/acs.biomac.9b01536] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|