BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cao C, Zhao J, Lu M, Garvey CJ, Stenzel MH. Correlation between Drug Loading Content and Biological Activity: The Complexity Demonstrated in Paclitaxel-Loaded Glycopolymer Micelle System. Biomacromolecules 2019;20:1545-54. [DOI: 10.1021/acs.biomac.8b01707] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Bi F, Zhang J, Xie R, Yu D, Wei H, Wang Y, Hua Z, Qi X, Huang B, Yang G. Adenosine Triphosphate-Responsive Glyconanorods through Self-Assembly of β-Cyclodextrin-Based Glycoconjugates for Targeted and Effective Bacterial Sensing and Killing. Biomacromolecules 2023. [PMID: 36651863 DOI: 10.1021/acs.biomac.2c01440] [Reference Citation Analysis]
2 Lu M, Wang S, Khine YY, Hong Y, Zheng J, Lu H, Stenzel MH. Dual drug delivery system of RAPTA-C and paclitaxel based on fructose coated nanoparticles for metastatic cancer treatment. Biochem Biophys Res Commun 2023;640:134-41. [PMID: 36508926 DOI: 10.1016/j.bbrc.2022.12.013] [Reference Citation Analysis]
3 Hu X, Sun Y, Zhou X, Zhang B, Guan H, Xia F, Gui S, Kong X, Li F, Ling D. Insight into Drug Loading Regulated Micellar Rigidity by Nuclear Magnetic Resonance. ACS Nano 2022;16:21407-16. [PMID: 36375116 DOI: 10.1021/acsnano.2c09785] [Reference Citation Analysis]
4 Mazloum-ardakani M, Shaker-ardakani N, Ebadi A. Development of Metal–Organic Frameworks (ZIF-8) as Low-Cost Carriers for Sustained Release of Hydrophobic and Hydrophilic Drugs: In Vitro Evaluation of Anti-breast Cancer and Anti-infection Effect. J Clust Sci. [DOI: 10.1007/s10876-022-02349-9] [Reference Citation Analysis]
5 Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM. Glycopolymer-Based Materials: Synthesis, Properties, and Biosensing Applications. Top Curr Chem (Cham) 2022;380:45. [PMID: 35951265 DOI: 10.1007/s41061-022-00395-5] [Reference Citation Analysis]
6 Baker AN, Hawker-Bond GW, Georgiou PG, Dedola S, Field RA, Gibson MI. Glycosylated gold nanoparticles in point of care diagnostics: from aggregation to lateral flow. Chem Soc Rev 2022. [PMID: 35894819 DOI: 10.1039/d2cs00267a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Stenzel MH. Glycopolymers for Drug Delivery: Opportunities and Challenges. Macromolecules 2022;55:4867-90. [DOI: 10.1021/acs.macromol.2c00557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
8 Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydrate Polymers 2022;284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Hu J, Lu K, Gu C, Heng X, Shan F, Chen G. Synthetic Sugar-Only Polymers with Double-Shoulder Task: Bioactivity and Imaging. Biomacromolecules 2022. [PMID: 35089683 DOI: 10.1021/acs.biomac.1c01409] [Reference Citation Analysis]
10 Li S, Liu P, Wang Z, Lian L, Zhao Y. Multi-tunable aggregation behaviors of thermo/pH-responsive toothbrush-like and jellyfish-like copolymers. Polym Chem . [DOI: 10.1039/d1py01667a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Noy JM, Chen F, Stenzel M. Post-functionalization of drug-loaded nanoparticles prepared by polymerization-induced self-assembly (PISA) with mitochondria targeting ligands. Beilstein J Org Chem 2021;17:2302-14. [PMID: 34621393 DOI: 10.3762/bjoc.17.148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Su L, Feng Y, Wei K, Xu X, Liu R, Chen G. Carbohydrate-Based Macromolecular Biomaterials. Chem Rev 2021. [PMID: 34338501 DOI: 10.1021/acs.chemrev.0c01338] [Cited by in Crossref: 35] [Cited by in F6Publishing: 46] [Article Influence: 17.5] [Reference Citation Analysis]
13 Zhang L, Jin D, Stenzel MH. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021;22:3168-201. [PMID: 34304566 DOI: 10.1021/acs.biomac.1c00669] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
14 Abd-Algaleel SA, Abdel-Bar HM, Metwally AA, Hathout RM. Evolution of the Computational Pharmaceutics Approaches in the Modeling and Prediction of Drug Payload in Lipid and Polymeric Nanocarriers. Pharmaceuticals (Basel) 2021;14:645. [PMID: 34358071 DOI: 10.3390/ph14070645] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Progress in Polymer Science 2021;117:101393. [DOI: 10.1016/j.progpolymsci.2021.101393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Garcia-hernandez JD, Street STG, Kang Y, Zhang Y, Manners I. Cargo Encapsulation in Uniform, Length-Tunable Aqueous Nanofibers with a Coaxial Crystalline and Amorphous Core. Macromolecules 2021;54:5784-96. [DOI: 10.1021/acs.macromol.1c00672] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
17 Cao C, Zhang L, Kent B, Wong S, Garvey CJ, Stenzel MH. The Protein Corona Leads to Deformation of Spherical Micelles. Angew Chem 2021;133:10430-10437. [DOI: 10.1002/ange.202101129] [Reference Citation Analysis]
18 Cao C, Zhang L, Kent B, Wong S, Garvey CJ, Stenzel MH. The Protein Corona Leads to Deformation of Spherical Micelles. Angew Chem Int Ed Engl 2021;60:10342-9. [PMID: 33543582 DOI: 10.1002/anie.202101129] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
19 Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021;10:e2001382. [PMID: 33448122 DOI: 10.1002/adhm.202001382] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
20 Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021;332:312-36. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Cited by in Crossref: 117] [Cited by in F6Publishing: 131] [Article Influence: 58.5] [Reference Citation Analysis]
21 Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021;13:477. [PMID: 33540922 DOI: 10.3390/polym13030477] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 27.0] [Reference Citation Analysis]
22 Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem 2021;133:2230-2234. [DOI: 10.1002/ange.202010934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Kim KN, Oh KS, Shim J, Schlaepfer IR, Karam SD, Lee JJ. Light-Responsive Polymeric Micellar Nanoparticles with Enhanced Formulation Stability. Polymers (Basel) 2021;13:377. [PMID: 33530388 DOI: 10.3390/polym13030377] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
24 Aranda-Lara L, García BEO, Isaac-Olivé K, Ferro-Flores G, Meléndez-Alafort L, Morales-Avila E. Drug Delivery Systems-Based Dendrimers and Polymer Micelles for Nuclear Diagnosis and Therapy. Macromol Biosci 2021;21:e2000362. [PMID: 33458936 DOI: 10.1002/mabi.202000362] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Li Y, Chang Y, Haddleton DM, Cameron NR, Eissa AM. Glycopolymer Functionalized Nanoparticles and Their Applications. Comprehensive Glycoscience 2021. [DOI: 10.1016/b978-0-12-819475-1.00085-7] [Reference Citation Analysis]
26 Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem Int Ed 2021;60:2202-6. [DOI: 10.1002/anie.202010934] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
27 Wu Z, Gao R, Zhou G, Huang Y, Zhao X, Ye F, Zhao G. Effect of temperature and pH on the encapsulation and release of β-carotene from octenylsuccinated oat β-glucan micelles. Carbohydr Polym 2021;255:117368. [PMID: 33436201 DOI: 10.1016/j.carbpol.2020.117368] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
28 Yap JE, Zhang L, Lovegrove JT, Beves JE, Stenzel MH. Visible Light-Responsive Drug Delivery Nanoparticle via Donor-Acceptor Stenhouse Adducts (DASA). Macromol Rapid Commun 2020;41:e2000236. [PMID: 32776488 DOI: 10.1002/marc.202000236] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
29 Cao C, Chen F, Garvey CJ, Stenzel MH. Drug-Directed Morphology Changes in Polymerization-Induced Self-Assembly (PISA) Influence the Biological Behavior of Nanoparticles. ACS Appl Mater Interfaces 2020;12:30221-33. [DOI: 10.1021/acsami.0c09054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
30 Noy JM, Chen F, Akhter DT, Houston ZH, Fletcher NL, Thurecht KJ, Stenzel MH. Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules 2020;21:2320-33. [PMID: 32343128 DOI: 10.1021/acs.biomac.0c00257] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
31 Saha S, Klein-hitpaß M, Vallet C, Knauer SK, Schmuck C, Voskuhl J, Giese M. Smart Glycopolymeric Nanoparticles for Multivalent Lectin Binding and Stimuli-Controlled Guest Release. Biomacromolecules 2020;21:2356-64. [DOI: 10.1021/acs.biomac.0c00292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
32 Sochor B, Düdükcü Ö, Lübtow MM, Schummer B, Jaksch S, Luxenhofer R. Probing the Complex Loading-Dependent Structural Changes in Ultrahigh Drug-Loaded Polymer Micelles by Small-Angle Neutron Scattering. Langmuir 2020;36:3494-503. [DOI: 10.1021/acs.langmuir.9b03460] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
33 Haider MS, Schreiner J, Kendl S, Kroiss M, Luxenhofer R. A Micellar Mitotane Formulation with High Drug-Loading and Solubility: Physico-Chemical Characterization and Cytotoxicity Studies in 2D and 3D In Vitro Tumor Models. Macromol Biosci 2020;20:e1900178. [PMID: 31596553 DOI: 10.1002/mabi.201900178] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
34 Procházková E, Cao C, Rawal A, Dračínský M, Bhattacharyya S, Císařová I, Hook JM, Stenzel MH. Polymorphic Transformation of Drugs Induced by Glycopolymeric Vesicles Designed for Anticancer Therapy Probed by Solid-State NMR Spectroscopy. ACS Appl Mater Interfaces 2019;11:28278-88. [DOI: 10.1021/acsami.9b05514] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]