BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zheng L, Zhang X, Wang Y, Liu F, Peng J, Zhao X, Yang H, Ma L, Wang B, Chang C, Wei H. Fabrication of Acidic pH-Cleavable Polymer for Anticancer Drug Delivery Using a Dual Functional Monomer. Biomacromolecules 2018;19:3874-82. [PMID: 30107727 DOI: 10.1021/acs.biomac.8b01001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Mondal B, Padhy A, Maji S, Gupta A, Sen Gupta S. Dual stimuli-responsive cross-linked nanoassemblies from an amphiphilic mannose-6-phosphate based tri-block copolymer for lysosomal membrane permeabilization. Biomater Sci 2023. [PMID: 36655818 DOI: 10.1039/d2bm02110b] [Reference Citation Analysis]
2 Archana S, Radhika D, Yogesh Kumar K, Benaka Prasad SB, Deepak Kasai R. Introduction to Biomedical Applications in Nanotechnology. Nanotechnology for Biomedical Applications 2022. [DOI: 10.1007/978-981-16-7483-9_1] [Reference Citation Analysis]
3 Liu Y, Ma W, Dong Z, Qiu N, Ma L, Chen Z, Wei H. Facile Synthesis of Hyperbranched Copolymers via an [A 2 + B 3 ] Click Polymerization Synthesized Reducible Hyperbranched Template. ACS Appl Polym Mater 2021;3:6375-82. [DOI: 10.1021/acsapm.1c01153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Xiang J, Zhao R, Wang B, Sun X, Guo X, Tan S, Liu W. Advanced Nano-Carriers for Anti-Tumor Drug Loading. Front Oncol 2021;11:758143. [PMID: 34604097 DOI: 10.3389/fonc.2021.758143] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Jazani AM, Shetty C, Movasat H, Bawa KK, Oh JK. Imidazole-Mediated Dual Location Disassembly of Acid-Degradable Intracellular Drug Delivery Block Copolymer Nanoassemblies. Macromol Rapid Commun 2021;42:e2100262. [PMID: 34050688 DOI: 10.1002/marc.202100262] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Xue X, Wu Y, Xu X, Xu B, Chen Z, Li T. pH and Reduction Dual-Responsive Bi-Drugs Conjugated Dextran Assemblies for Combination Chemotherapy and In Vitro Evaluation. Polymers (Basel) 2021;13:1515. [PMID: 34066882 DOI: 10.3390/polym13091515] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
7 Peng J, Liu Y, Zhang M, Liu F, Ma L, Yu CY, Wei H. One-pot fabrication of dual-redox sensitive, stabilized supramolecular nanocontainers for potential programmable drug release using a multifunctional cyclodextrin unit. J Control Release 2021;334:290-302. [PMID: 33905803 DOI: 10.1016/j.jconrel.2021.04.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
8 Kost B, Basko M. Synthesis and properties of l -lactide/1,3-dioxolane copolymers: preparation of polyesters with enhanced acid sensitivity. Polym Chem 2021;12:2551-62. [DOI: 10.1039/d1py00358e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
9 Li H, Jing F, Hao J. GSH ‐responsive polyglutamic acid nanocarriers for dual targeted cancer therapy. J Appl Polym Sci 2020;137:49339. [DOI: 10.1002/app.49339] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Coste G, Negrell C, Caillol S. From gas release to foam synthesis, the second breath of blowing agents. European Polymer Journal 2020;140:110029. [DOI: 10.1016/j.eurpolymj.2020.110029] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
11 Liu L, Wang S, Qi P, Song S, Yang Y, Shi J, Han G. Dopamine-modified poly(ε-caprolactone) micelles for pH controlled delivery of bortezomib. International Journal of Pharmaceutics 2020;590:119885. [DOI: 10.1016/j.ijpharm.2020.119885] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
12 Zheng Z, Yu C, Wei H. Injectable Hydrogels as Three-Dimensional Network Reservoirs for Osteoporosis Treatment. Tissue Eng Part B Rev 2021;27:430-54. [PMID: 33086984 DOI: 10.1089/ten.TEB.2020.0168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
13 Zhou B, Cheng P, Jiang J, Chen J, Zhang L, Liang J, Wu W, Meng Q, Li J. Engineering polyzwitterion with acylsulfonamide-based betaine structure for protonated switch of surface chemistry at tumoral pH and reductive responsive drug release of polymeric micelles. Materials Today Chemistry 2020;17:100339. [DOI: 10.1016/j.mtchem.2020.100339] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
14 Bobde Y, Biswas S, Ghosh B. PEGylated N-(2 hydroxypropyl) methacrylamide-doxorubicin conjugate as pH-responsive polymeric nanoparticles for cancer therapy. Reactive and Functional Polymers 2020;151:104561. [DOI: 10.1016/j.reactfunctpolym.2020.104561] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
15 Liu Y, Cong Y, Ma W, Kang G, Meng C, Liu F, Yu C, Wei H. Triple Functional AB2 Unit-Modulated Facile Preparation of Bioreducible Hyperbranched Copolymers. ACS Biomater Sci Eng 2020;6:2812-21. [PMID: 33463294 DOI: 10.1021/acsbiomaterials.0c00261] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
16 Yang X, Wu W, Li J, Hu Z, Wang N, Yu X. A facile strategy to construct fluorescent pH-sensitive drug delivery vehicle. Polymer 2020;197:122496. [DOI: 10.1016/j.polymer.2020.122496] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
17 Van Herck S, De Geest BG. Tweaking the acid-sensitivity of transiently thermoresponsive Polyacrylamides with cyclic acetal repeating units. Sci China Chem 2020;63:504-512. [DOI: 10.1007/s11426-019-9705-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Liu Z, Cao T, Xue Y, Li M, Wu M, Engle JW, He Q, Cai W, Lan M, Zhang W. Self-Amplified Photodynamic Therapy through the 1 O2 -Mediated Internalization of Photosensitizers from a Ppa-Bearing Block Copolymer. Angew Chem Int Ed Engl 2020;59:3711-7. [PMID: 31808983 DOI: 10.1002/anie.201914434] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
19 Liu Z, Cao T, Xue Y, Li M, Wu M, Engle JW, He Q, Cai W, Lan M, Zhang W. Self‐Amplified Photodynamic Therapy through the 1 O 2 ‐Mediated Internalization of Photosensitizers from a Ppa‐Bearing Block Copolymer. Angew Chem 2020;132:3740-6. [DOI: 10.1002/ange.201914434] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Zhang M, Liu Y, Peng J, Liu Y, Liu F, Ma W, Ma L, Yu C, Wei H. Facile construction of stabilized, pH-sensitive micelles based on cyclic statistical copolymers of poly(oligo(ethylene glycol)methyl ether methacrylate- st-N , N -dimethylaminoethyl methacrylate) for in vitro anticancer drug delivery. Polym Chem 2020;11:6139-48. [DOI: 10.1039/d0py01076f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
21 Müller A, Jung D, Sun J, Kuckling D. Synthesis and characterization of light-degradable bromocoumarin functionalized polycarbonates. Polym Chem 2020;11:721-33. [DOI: 10.1039/c9py01405e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
22 Zhang Z, Yu M, An T, Yang J, Zou M, Zhai Y, Sun W, Cheng G. Tumor Microenvironment Stimuli-Responsive Polymeric Prodrug Micelles for Improved Cancer Therapy. Pharm Res 2020;37. [DOI: 10.1007/s11095-019-2709-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
23 Chiaradia V, Hanay SB, Kimmins SD, Oliveira D, Araújo PHH, Sayer C, Heise A. Crosslinking of Electrospun Fibres from Unsaturated Polyesters by Bis-Triazolinediones (TAD). Polymers (Basel) 2019;11:E1808. [PMID: 31689927 DOI: 10.3390/polym11111808] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
24 Shang Y, Zheng N, Wang Z. Tetraphenylsilane-Cored Star-Shaped Polymer Micelles with pH/Redox Dual Response and Active Targeting Function for Drug-Controlled Release. Biomacromolecules 2019;20:4602-10. [DOI: 10.1021/acs.biomac.9b01472] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
25 Kang G, Sun L, Liu Y, Meng C, Ma W, Wang B, Ma L, Yu C, Wei H. Micelles with Cyclic Poly(ε-caprolactone) Moieties: Greater Stability, Larger Drug Loading Capacity, and Slower Degradation Property for Controlled Drug Release. Langmuir 2019;35:12509-17. [DOI: 10.1021/acs.langmuir.9b02346] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
26 Cao Z, Li W, Liu R, Li X, Li H, Liu L, Chen Y, Lv C, Liu Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed Pharmacother 2019;118:109340. [PMID: 31545284 DOI: 10.1016/j.biopha.2019.109340] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 8.8] [Reference Citation Analysis]
27 Zhang X, Liu F, Li X, Tian Y, Ma L, Yu C, Wei H. The fabrication of hybrid micelles with enhanced permeability for drug delivery via a diethoxymethylsilyl-based crosslinking strategy. Polym Chem 2019;10:4529-36. [DOI: 10.1039/c9py00810a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]