BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kaga S, Truong NP, Esser L, Senyschyn D, Sanyal A, Sanyal R, Quinn JF, Davis TP, Kaminskas LM, Whittaker MR. Influence of Size and Shape on the Biodistribution of Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Biomacromolecules 2017;18:3963-70. [DOI: 10.1021/acs.biomac.7b00995] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Violatto MB, Sitia G, Talamini L, Morelli A, Tran NL, Zhang Q, Masood A, Pelaz B, Chakraborty I, Cui D, Parak WJ, Salmona M, Bastús NG, Puntes V, Bigini P. Variations in Biodistribution and Acute Response of Differently Shaped Titania Nanoparticles in Healthy Rodents. Nanomaterials 2023;13:1174. [DOI: 10.3390/nano13071174] [Reference Citation Analysis]
2 Hamelmann NM, Paulusse JMJ. Single-chain polymer nanoparticles in biomedical applications. J Control Release 2023;356:26-42. [PMID: 36804328 DOI: 10.1016/j.jconrel.2023.02.019] [Reference Citation Analysis]
3 Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023;52:728-78. [PMID: 36537575 DOI: 10.1039/d2cs00106c] [Reference Citation Analysis]
4 Kaplan M, Öztürk K, Öztürk SC, Tavukçuoğlu E, Esendağlı G, Calis S. Effects of Particle Geometry for PLGA-Based Nanoparticles: Preparation and In Vitro/In Vivo Evaluation. Pharmaceutics 2023;15. [PMID: 36678804 DOI: 10.3390/pharmaceutics15010175] [Reference Citation Analysis]
5 Yagublu V, Karimova A, Hajibabazadeh J, Reissfelder C, Muradov M, Bellucci S, Allahverdiyev A. Overview of Physicochemical Properties of Nanoparticles as Drug Carriers for Targeted Cancer Therapy. JFB 2022;13:196. [DOI: 10.3390/jfb13040196] [Reference Citation Analysis]
6 Chandrasiri I, Liu Y, Adjei-sowah E, Xiao B, Benoit DSW. Reproducible and controlled peptide functionalization of polymeric nanoparticles. Front Biomater Sci 2022;1. [DOI: 10.3389/fbiom.2022.1003172] [Reference Citation Analysis]
7 Kuo C, Mirab F, Abidian MR, Majd S. Nanoparticle Rigidity for Brain Tumor Cell Uptake. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2022. [DOI: 10.1109/embc48229.2022.9871312] [Reference Citation Analysis]
8 Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022:S1044-579X(22)00155-9. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022:S1742-7061(22)00312-9. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Reference Citation Analysis]
11 Kerr A, Sagita E, Mansfield EDH, Nguyen TH, Feeney OM, Pouton CW, Porter CJH, Sanchis J, Perrier S. Polymeric Nanotubes as Drug Delivery Vectors─Comparison of Covalently and Supramolecularly Assembled Constructs. Biomacromolecules 2022. [PMID: 35582852 DOI: 10.1021/acs.biomac.2c00063] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 da Silva Brito WA, Mutter F, Wende K, Cecchini AL, Schmidt A, Bekeschus S. Consequences of nano and microplastic exposure in rodent models: the known and unknown. Part Fibre Toxicol 2022;19:28. [PMID: 35449034 DOI: 10.1186/s12989-022-00473-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022:S0165-6147(22)00053-0. [PMID: 35459589 DOI: 10.1016/j.tips.2022.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Kaur S, Allan SM, Al-ahmady ZS. Re-directing nanomedicines to the spleen: A potential technology for peripheral immunomodulation. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.04.005] [Reference Citation Analysis]
15 Coumes F, Stoffelbach F, Rieger J. Polymerization‐Induced Self‐Assembly: From Macromolecular Engineering Toward Applications. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0037] [Reference Citation Analysis]
16 Parkatzidis K, Truong NP, Rolland M, Lutz-Bueno V, Pilkington EH, Mezzenga R, Anastasaki A. Transformer-Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angew Chem Int Ed Engl 2022;61:e202113424. [PMID: 35014134 DOI: 10.1002/anie.202113424] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
17 Zhu C, Denis S, Nicolas J. A Simple Route to Aqueous Suspensions of Degradable Copolymer Nanoparticles Based on Radical Ring-Opening Polymerization-Induced Self-Assembly (rROPISA). Chem Mater . [DOI: 10.1021/acs.chemmater.1c04151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Niaz S, Forbes B, Raimi-abraham BT. Exploiting Endocytosis for Non-Spherical Nanoparticle Cellular Uptake. Nanomanufacturing 2022;2:1-16. [DOI: 10.3390/nanomanufacturing2010001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Parkatzidis K, Truong NP, Rolland M, Lutz‐bueno V, Pilkington EH, Mezzenga R, Anastasaki A. Transformer‐Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202113424] [Reference Citation Analysis]
20 Yu Q, England RM, Gunnarsson A, Luxenhofer R, Treacher K, Ashford MB. Designing Highly Stable Poly(sarcosine)-Based Telodendrimer Micelles with High Drug Content Exemplified with Fulvestrant. Macromolecules. [DOI: 10.1021/acs.macromol.1c02086] [Reference Citation Analysis]
21 Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2021;342:93-110. [PMID: 34973308 DOI: 10.1016/j.jconrel.2021.12.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
22 Rolland M, Truong NP, Parkatzidis K, Pilkington EH, Torzynski AL, Style RW, Dufresne ER, Anastasaki A. Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. JACS Au 2021;1:1975-86. [PMID: 34841413 DOI: 10.1021/jacsau.1c00321] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
23 Peled E, Sosnik A. Amphiphilic galactomannan nanoparticles trigger the alternative activation of murine macrophages. J Control Release 2021;339:473-83. [PMID: 34662585 DOI: 10.1016/j.jconrel.2021.10.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
24 Vasconcelos AG, Barros ALAN, Cabral WF, Moreira DC, da Silva IGM, Silva-carvalho AÉ, de Almeida MP, Albuquerque LFF, dos Santos RC, S. Brito AK, Saldanha-araújo F, Arcanjo DDR, C. Martins MDC, dos S. Borges TK, Báo SN, Plácido A, Eaton P, Kuckelhaus SAS, Leite JRSA. Promising self-emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.): in vivo toxicity, biodistribution and cytotoxicity on DU-145 prostate cancer cells. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00103-w] [Reference Citation Analysis]
25 Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. Adv NanoBio Res 2021;1:2100002. [DOI: 10.1002/anbr.202100002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Szabat-Iriaka B, Le Borgne M. Brain safety concerns of nanomedicines: The need for a specific regulatory framework. Drug Discov Today 2021;26:2502-7. [PMID: 34224902 DOI: 10.1016/j.drudis.2021.06.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Nie JH, Shen Y, Roshdy M, Cheng X, Wang G, Yang X. Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolae-mediated endocytosis and faulty apoptosis. Nanotoxicology 2021;15:885-904. [PMID: 34087085 DOI: 10.1080/17435390.2021.1930228] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Le NTT, Trinh BTD, Nguyen DH, Tran LD, Luu CH, Hoang Thi TT. The Physicochemical and Antifungal Properties of Eco-friendly Silver Nanoparticles Synthesized by Psidium guajava Leaf Extract in the Comparison With Tamarindus indica. J Clust Sci 2021;32:601-11. [DOI: 10.1007/s10876-020-01823-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
29 Patil NA, Kandasubramanian B. Functionalized polylysine biomaterials for advanced medical applications: A review. European Polymer Journal 2021;146:110248. [DOI: 10.1016/j.eurpolymj.2020.110248] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 13.5] [Reference Citation Analysis]
30 Cook AB, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano 2021;15:2068-98. [PMID: 33555171 DOI: 10.1021/acsnano.0c09115] [Cited by in Crossref: 45] [Cited by in F6Publishing: 54] [Article Influence: 22.5] [Reference Citation Analysis]
31 Narváez-Muñoz C, Ryzhakov P, Pons-Prats J. Determination of the Operational Parameters for the Manufacturing of Spherical PVP Particles via Electrospray. Polymers (Basel) 2021;13:529. [PMID: 33578985 DOI: 10.3390/polym13040529] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Yang K, Zhang S, He J, Nie Z. Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today 2021;36:101046. [DOI: 10.1016/j.nantod.2020.101046] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 15.5] [Reference Citation Analysis]
33 Abad-alvaro I, Leite D, Bartczak D, Cuello-nunez S, Gomez-gomez B, Madrid Y, Aramendia M, Resano M, Goenaga-infante H. An insight into the determination of size and number concentration of silver nanoparticles in blood using single particle ICP-MS (spICP-MS): feasibility of application to samples relevant to in vivo toxicology studies. J Anal At Spectrom 2021;36:1180-92. [DOI: 10.1039/d1ja00068c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
34 Wen W, Chen A. The self-assembly of single chain Janus nanoparticles from azobenzene-containing block copolymers and reversible photoinduced morphology transitions. Polym Chem 2021;12:2447-56. [DOI: 10.1039/d1py00223f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
35 Bansal V, Katiyar SS, Dora CP. Toxicity aspects: Crucial obstacles to clinical translation of nanomedicines. Direct Nose-to-Brain Drug Delivery 2021. [DOI: 10.1016/b978-0-12-822522-6.00022-9] [Reference Citation Analysis]
36 Zhu C, Nicolas J. Towards nanoparticles with site-specific degradability by ring-opening copolymerization induced self-assembly in organic medium. Polym Chem 2021;12:594-607. [DOI: 10.1039/d0py01425g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
37 Lombardo D, Calandra P, Kiselev MA. Structural Characterization of Biomaterials by Means of Small Angle X-rays and Neutron Scattering (SAXS and SANS), and Light Scattering Experiments. Molecules 2020;25:E5624. [PMID: 33260426 DOI: 10.3390/molecules25235624] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
38 Beagan A, Lahmadi S, Alghamdi A, Halwani M, Almeataq M, Alhazaa A, Alotaibi K, Alswieleh A. Glucosamine Modified the Surface of pH-Responsive Poly(2-(diethylamino)ethyl Methacrylate) Brushes Grafted on Hollow Mesoporous Silica Nanoparticles as Smart Nanocarrier. Polymers (Basel) 2020;12:E2749. [PMID: 33233772 DOI: 10.3390/polym12112749] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
39 Gavrilov AA, Shupanov RM, Chertovich AV. Phase Diagram for Ideal Diblock-Copolymer Micelles Compared to Polymerization-Induced Self Assembly. Polymers (Basel) 2020;12:E2599. [PMID: 33167451 DOI: 10.3390/polym12112599] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
40 Maithania HV, Mohanty BS, Chaudhari PR, Samad A, Devarajan PV. Shape mediated splenotropic delivery of buparvaquone loaded solid lipid nanoparticles. Drug Deliv Transl Res 2020;10:159-67. [PMID: 31468307 DOI: 10.1007/s13346-019-00670-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
41 Li J, Janoušková O, Fernandez-Alvarez R, Mesíková S, Tošner Z, Kereïche S, Uchman M, Matějíček P. Designed Boron-Rich Polymeric Nanoparticles Based on Nano-ion Pairing for Boron Delivery. Chemistry 2020;26:14283-9. [PMID: 32492217 DOI: 10.1002/chem.202001699] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
42 T. SJK, V.r. A, M. V, Muthu A. Biosynthesis of multiphase iron nanoparticles using Syzygium aromaticum and their magnetic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;603:125241. [DOI: 10.1016/j.colsurfa.2020.125241] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020;284:102261. [PMID: 32942181 DOI: 10.1016/j.cis.2020.102261] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
44 Nahi O, Cayre OJ, Kim YY, Smith AJ, Warren NJ, Meldrum FC. A facile method for generating worm-like micelles with controlled lengths and narrow polydispersity. Chem Commun (Camb) 2020;56:7463-6. [PMID: 32495778 DOI: 10.1039/d0cc02313b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
45 Street STG, He Y, Jin XH, Hodgson L, Verkade P, Manners I. Cellular uptake and targeting of low dispersity, dual emissive, segmented block copolymer nanofibers. Chem Sci 2020;11:8394-408. [PMID: 34094184 DOI: 10.1039/d0sc02593c] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
46 Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020;156:188-213. [PMID: 32610061 DOI: 10.1016/j.addr.2020.06.020] [Cited by in Crossref: 82] [Cited by in F6Publishing: 70] [Article Influence: 27.3] [Reference Citation Analysis]
47 Vu MN, Kelly HG, Wheatley AK, Peng S, Pilkington EH, Veldhuis NA, Davis TP, Kent SJ, Truong NP. Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network. Small 2020;16:e2002861. [PMID: 32583981 DOI: 10.1002/smll.202002861] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
48 Liao ZX, Huang KY, Kempson IM, Li HJ, Tseng SJ, Yang PC. Nanomodified strategies to overcome EGFR-tyrosine kinase inhibitors resistance in non-small cell lung cancer. J Control Release 2020;324:482-92. [PMID: 32497570 DOI: 10.1016/j.jconrel.2020.05.043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
49 Gallego-Arranz T, Pérez-Cantero A, Torrado-Salmerón C, Guarnizo-Herrero V, Capilla J, Torrado-Durán S. Improvement of the pharmacokinetic/pharmacodynamic relationship in the treatment of invasive aspergillosis with voriconazole. Reduced drug toxicity through novel rapid release formulations. Colloids Surf B Biointerfaces 2020;193:111119. [PMID: 32464356 DOI: 10.1016/j.colsurfb.2020.111119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
50 Szczęch M, Szczepanowicz K. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials (Basel) 2020;10:E496. [PMID: 32164194 DOI: 10.3390/nano10030496] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
51 Gurnani P, Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Progress in Polymer Science 2020;102:101209. [DOI: 10.1016/j.progpolymsci.2020.101209] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 15.7] [Reference Citation Analysis]
52 Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials (Basel) 2020;13:E1048. [PMID: 32110877 DOI: 10.3390/ma13051048] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 16.7] [Reference Citation Analysis]
53 Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers (Basel) 2020;12:E298. [PMID: 32024289 DOI: 10.3390/polym12020298] [Cited by in Crossref: 203] [Cited by in F6Publishing: 219] [Article Influence: 67.7] [Reference Citation Analysis]
54 Tanaka J, Evans A, Gurnani P, Kerr A, Wilson P. Functionalisation and stabilisation of polymeric arsenical nanoparticles prepared by sequential reductive and radical cross-linking. Polym Chem 2020;11:2519-31. [DOI: 10.1039/d0py00229a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Parkinson S, Knox ST, Bourne RA, Warren NJ. Rapid production of block copolymer nano-objects via continuous-flow ultrafast RAFT dispersion polymerisation. Polym Chem 2020;11:3465-74. [DOI: 10.1039/d0py00276c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
56 Clogston JD, Hackley VA, Prina-Mello A, Puri S, Sonzini S, Soo PL. Sizing up the Next Generation of Nanomedicines. Pharm Res 2019;37:6. [PMID: 31828540 DOI: 10.1007/s11095-019-2736-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
57 Peng W, Zhang Z, Rong M, Zhang M. Core-Shell Structure Design of Hollow Mesoporous Silica Nanospheres Based on Thermo-Sensitive PNIPAM and pH-Responsive Catechol-Fe3+ Complex. Polymers (Basel) 2019;11:E1832. [PMID: 31703389 DOI: 10.3390/polym11111832] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
58 Santha Kumar ARS, Singha NK. RAFT polymerization of 2‐hydroxyethyl methacrylate in a deep eutectic solvent. J Polym Sci Part A: Polym Chem 2019;57:2281-6. [DOI: 10.1002/pola.29527] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
59 Urbaniak T, Musiał W. Influence of Solvent Evaporation Technique Parameters on Diameter of Submicron Lamivudine-Poly-ε-Caprolactone Conjugate Particles. Nanomaterials (Basel) 2019;9:E1240. [PMID: 31480469 DOI: 10.3390/nano9091240] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
60 Vitiello G, Melone P, Silvestri B, Pezzella A, Di Donato P, D’errico G, Di Napoli M, Zanfardino A, Varcamonti M, Luciani G. Titanium based complexes with melanin precursors as a tool for directing melanogenic pathways. Pure and Applied Chemistry 2019;91:1605-16. [DOI: 10.1515/pac-2018-1210] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
61 Yu Q, Roberts MG, Pearce S, Oliver AM, Zhou H, Allen C, Manners I, Winnik MA. Rodlike Block Copolymer Micelles of Controlled Length in Water Designed for Biomedical Applications. Macromolecules 2019;52:5231-44. [DOI: 10.1021/acs.macromol.9b00959] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
62 Yu SH, Esser L, Khor SY, Senyschyn D, Veldhuis NA, Whittaker MR, Ercole F, Davis TP, Quinn JF. Development of a shape‐controlled H 2 S delivery system using epoxide‐functional nanoparticles. J Polym Sci Part A: Polym Chem 2019;57:1982-93. [DOI: 10.1002/pola.29382] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
63 Yang Y, Nie D, Liu Y, Yu M, Gan Y. Advances in particle shape engineering for improved drug delivery. Drug Discovery Today 2019;24:575-83. [DOI: 10.1016/j.drudis.2018.10.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
64 Elter JK, Biehl P, Gottschaldt M, Schacher FH. Core-crosslinked worm-like micelles from polyether-based diblock terpolymers. Polym Chem 2019;10:5425-39. [DOI: 10.1039/c9py01054h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
65 Zhu X, Vo C, Taylor M, Smith BR. Non-spherical micro- and nanoparticles in nanomedicine. Mater Horiz 2019;6:1094-121. [DOI: 10.1039/c8mh01527a] [Cited by in Crossref: 80] [Cited by in F6Publishing: 85] [Article Influence: 20.0] [Reference Citation Analysis]
66 Finnegan JR, He X, Street STG, Garcia-Hernandez JD, Hayward DW, Harniman RL, Richardson RM, Whittell GR, Manners I. Extending the Scope of "Living" Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers. J Am Chem Soc 2018;140:17127-40. [PMID: 30392357 DOI: 10.1021/jacs.8b09861] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 11.8] [Reference Citation Analysis]
67 Piogé S, Tran TN, Mckenzie TG, Pascual S, Ashokkumar M, Fontaine L, Qiao G. Sono-RAFT Polymerization-Induced Self-Assembly in Aqueous Dispersion: Synthesis of LCST-type Thermosensitive Nanogels. Macromolecules 2018;51:8862-9. [DOI: 10.1021/acs.macromol.8b01606] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
68 Ren X, Hao X, Li H, Ke M, Zheng B, Huang J. Progress in the development of nanosensitizers for X-ray-induced photodynamic therapy. Drug Discovery Today 2018;23:1791-800. [DOI: 10.1016/j.drudis.2018.05.029] [Cited by in Crossref: 35] [Cited by in F6Publishing: 41] [Article Influence: 7.0] [Reference Citation Analysis]
69 Ottemann BM, Helmink AJ, Zhang W, Mukadam I, Woldstad C, Hilaire JR, Liu Y, McMillan JM, Edagwa BJ, Mosley RL, Garrison JC, Kevadiya BD, Gendelman HE. Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities. Biomaterials 2018;185:174-93. [PMID: 30245386 DOI: 10.1016/j.biomaterials.2018.09.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
70 Gu W, Bobrin VA, Chen SR, Wang Z, Schoning JP, Gu Y, Chen W, Chen M, Jia Z, Monteiro MJ. Biodistribution of PNIPAM-Coated Nanostructures Synthesized by the TDMT Method. Biomacromolecules 2019;20:625-34. [DOI: 10.1021/acs.biomac.8b01196] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
71 Khor SY, Quinn JF, Whittaker MR, Truong NP, Davis TP. Controlling Nanomaterial Size and Shape for Biomedical Applications via Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2019;40:e1800438. [PMID: 30091816 DOI: 10.1002/marc.201800438] [Cited by in Crossref: 102] [Cited by in F6Publishing: 104] [Article Influence: 20.4] [Reference Citation Analysis]
72 Khor SY, Vu MN, Pilkington EH, Johnston APR, Whittaker MR, Quinn JF, Truong NP, Davis TP. Elucidating the Influences of Size, Surface Chemistry, and Dynamic Flow on Cellular Association of Nanoparticles Made by Polymerization-Induced Self-Assembly. Small 2018;14:e1801702. [PMID: 30043521 DOI: 10.1002/smll.201801702] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 10.4] [Reference Citation Analysis]
73 Chen Y, Zhang L, Liu Y, Tan S, Qu R, Wu Z, Zhou Y, Huang J. Preparation of PGA-PAE-Micelles for Enhanced Antitumor Efficacy of Cisplatin. ACS Appl Mater Interfaces 2018;10:25006-16. [PMID: 29781607 DOI: 10.1021/acsami.8b04259] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
74 György C, Lovett JR, Penfold NJW, Armes SP. Epoxy-Functional Sterically Stabilized Diblock Copolymer Nanoparticles via RAFT Aqueous Emulsion Polymerization: Comparison of Two Synthetic Strategies. Macromol Rapid Commun 2019;40:1800289. [DOI: 10.1002/marc.201800289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
75 Truong NP, Zhang C, Nguyen TA, Anastasaki A, Schulze MW, Quinn JF, Whittaker AK, Hawker CJ, Whittaker MR, Davis TP. Overcoming Surfactant-Induced Morphology Instability of Noncrosslinked Diblock Copolymer Nano-Objects Obtained by RAFT Emulsion Polymerization. ACS Macro Lett 2018;7:159-165. [DOI: 10.1021/acsmacrolett.7b00978] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 7.2] [Reference Citation Analysis]