BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Breitenbach BB, Schmid I, Wich PR. Amphiphilic Polysaccharide Block Copolymers for pH-Responsive Micellar Nanoparticles. Biomacromolecules 2017;18:2839-48. [DOI: 10.1021/acs.biomac.7b00771] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Carvalho LT, Teixeira AJR, Moraes RM, Barbosa RF, Queiroz RC, Tada DB, Mulinari DR, Rosa DS, Ré MI, Medeiros SF. Preparation and characterization of cationic pullulan-based polymers with hydrophilic or amphiphilic characteristics for drug delivery. Reactive and Functional Polymers 2022;181:105441. [DOI: 10.1016/j.reactfunctpolym.2022.105441] [Reference Citation Analysis]
2 Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chemico-Biological Interactions 2022;368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Reference Citation Analysis]
3 Khodadadi Yazdi M, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic CM, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable polysaccharides for biomedical applications: A comprehensive review. Progress in Polymer Science 2022;133:101590. [DOI: 10.1016/j.progpolymsci.2022.101590] [Reference Citation Analysis]
4 Chen M, Yu P, Ao C, Zhang M, Xing J, Ding C, Xie J, Li J. Ethanol-Induced Responsive Behavior of Natural Polysaccharide Hydrogels. Ind Eng Chem Res 2022;61:13145-13153. [DOI: 10.1021/acs.iecr.2c02246] [Reference Citation Analysis]
5 Yue L, Song X, Cui X, Zhang Q, Tian X, Yang X, Wu Q, Liu Y, Ruan R, Wang Y. Synthesis, characterization, and evaluation of microwave-assisted fabricated selenylation Astragalus polysaccharides. Int J Biol Macromol 2022;221:8-15. [PMID: 36075149 DOI: 10.1016/j.ijbiomac.2022.09.011] [Reference Citation Analysis]
6 Roychoudhury R. Polymeric Nanomaterials for Cancer Theranostics. Bionanotechnology: Next-Generation Therapeutic Tools 2022. [DOI: 10.2174/9789815051278122010006] [Reference Citation Analysis]
7 Baptista S, Pereira JR, Gil CV, Torres CAV, Reis MAM, Freitas F. Development of Olive Oil and α-Tocopherol Containing Emulsions Stabilized by FucoPol: Rheological and Textural Analyses. Polymers (Basel) 2022;14:2349. [PMID: 35745925 DOI: 10.3390/polym14122349] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Sommer K, Zollfrank C. Block Copolysaccharides from Methylated and Acetylated Cellulose and Starch. Biomacromolecules. [DOI: 10.1021/acs.biomac.1c01673] [Reference Citation Analysis]
9 Manna K, Patra P, Roy A, Roy RK, Chaitanya Sunka K, Dhara S, Patra N, Pal S. Amino Acid Inspired Alginate-Based pH Sensitive Polymeric Micelles via Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Appl Polym Mater 2022;4:4432-44. [DOI: 10.1021/acsapm.2c00393] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydrate Polymers 2022;284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Raja A, Mahendiratta S, Singh H, Shekhar N, Prakash A, Medhi B. Nanoparticles in Chronic Respiratory Diseases. Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases 2022. [DOI: 10.1007/978-981-16-4392-7_8] [Reference Citation Analysis]
12 Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021;26:7031. [PMID: 34834124 DOI: 10.3390/molecules26227031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
13 Liu P, Huang P, Kang ET. pH-Sensitive Dextran-Based Micelles from Copper-Free Click Reaction for Antitumor Drug Delivery. Langmuir 2021;37:12990-9. [PMID: 34714094 DOI: 10.1021/acs.langmuir.1c02049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Feng Y, Quinnell SP, Lanzi AM, Vegas AJ. Alginate-Based Amphiphilic Block Copolymers as a Drug Codelivery Platform. Nano Lett 2021;21:7495-504. [PMID: 34495662 DOI: 10.1021/acs.nanolett.1c01525] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Mo IV, Schatz C, Christensen BE. Functionalisation of the non-reducing end of chitin by selective periodate oxidation: A new approach to form complex block polysaccharides and water-soluble chitin-based block polymers. Carbohydr Polym 2021;267:118193. [PMID: 34119160 DOI: 10.1016/j.carbpol.2021.118193] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Katsuhara S, Takagi Y, Sunagawa N, Igarashi K, Yamamoto T, Tajima K, Isono T, Satoh T. Enhanced Self-Assembly and Mechanical Properties of Cellulose-Based Triblock Copolymers: Comparisons with Amylose-Based Triblock Copolymers. ACS Sustainable Chem Eng 2021;9:9779-88. [DOI: 10.1021/acssuschemeng.1c02180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wang S, Fontana F, Shahbazi MA, Santos HA. Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun (Camb) 2021;57:4212-29. [PMID: 33913978 DOI: 10.1039/d1cc00811k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
18 Atanase LI. Micellar drug-delivery systems based on amphiphilic block and graft polysaccharides. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00021-9] [Reference Citation Analysis]
19 Coughlin ML, Liberman L, Ertem SP, Edmund J, Bates FS, Lodge TP. Methyl cellulose solutions and gels: fibril formation and gelation properties. Progress in Polymer Science 2021;112:101324. [DOI: 10.1016/j.progpolymsci.2020.101324] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
20 Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021;9:7030-62. [DOI: 10.1039/d1tb00628b] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 17.5] [Reference Citation Analysis]
21 Skalickova S, Horky P, Mlejnkova V, Skladanka J, Hosnedlova B, Ruttkay‐nedecky B, Fernandez C, Kizek R. Theranostic Approach for the Protein Corona of Polysaccharide Nanoparticles. Chem Rec 2021;21:17-28. [DOI: 10.1002/tcr.202000042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Gangarde YM, T K S, Panigrahi NR, Mishra RK, Saraogi I. Amphiphilic Small-Molecule Assemblies to Enhance the Solubility and Stability of Hydrophobic Drugs. ACS Omega 2020;5:28375-81. [PMID: 33163821 DOI: 10.1021/acsomega.0c04395] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Zhu S, Hu J, Liu S, Guo S, Jia Y, Li M, Kong W, Liang J, Zhang J, Wang J. Synthesis of Se-polysaccharide mediated by selenium oxychloride: Structure features and antiproliferative activity. Carbohydrate Polymers 2020;246:116545. [DOI: 10.1016/j.carbpol.2020.116545] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
24 Peng X, Yang ZZ, Yang P, Chai YQ, Liang WB, Li ZH, Yuan R. Rapid self-disassembly of DNA diblock copolymer micelles via target induced hydrophilic-hydrophobic regulation for sensitive MiRNA detection. Chem Commun (Camb) 2020;56:10215-8. [PMID: 32748935 DOI: 10.1039/d0cc03858j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
25 Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020;20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 13.7] [Reference Citation Analysis]
26 Caceres M, Petit E, Deratani A. Partial depolymerization of hydroxypropylmethyl cellulose for production of low molar mass polymer chains. Carbohydrate Polymers 2020;229:115461. [DOI: 10.1016/j.carbpol.2019.115461] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Volokhova AS, Edgar KJ, Matson JB. Polysaccharide-containing block copolymers: synthesis and applications. Mater Chem Front 2020;4:99-112. [DOI: 10.1039/c9qm00481e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
28 Moura S, Noro J, Cerqueira P, Silva C, Cavaco-Paulo A, Loureiro A. Poloxamer 407 based-nanoparticles for controlled release of methotrexate. Int J Pharm 2020;575:118924. [PMID: 31870962 DOI: 10.1016/j.ijpharm.2019.118924] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
29 Stanciu MC, Nichifor M, Mocanu G, Tuchilus C, Ailiesei GL. Block copolymers containing dextran and deoxycholic acid polyesters. Synthesis, self-assembly and hydrophobic drug encapsulation. Carbohydrate Polymers 2019;223:115118. [DOI: 10.1016/j.carbpol.2019.115118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
30 Breitenbach BB, Steiert E, Konhäuser M, Vogt L, Wang Y, Parekh SH, Wich PR. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. Soft Matter 2019;15:1423-34. [DOI: 10.1039/c8sm02204f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
31 Suhara R, Yamagami M, Kamitakahara H, Yoshinaga A, Tanaka Y, Takano T. Methylcelluloses end-functionalized with peptides as thermoresponsive supramolecular hydrogelators. Cellulose 2019;26:355-382. [DOI: 10.1007/s10570-018-2027-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Naveen C, Shastri NR. Polysaccharide nanomicelles as drug carriers. Polysaccharide Carriers for Drug Delivery 2019. [DOI: 10.1016/b978-0-08-102553-6.00012-x] [Reference Citation Analysis]
33 Dai Y, Chen X, Zhang X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019;10:34-44. [DOI: 10.1039/c8py01174e] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 12.0] [Reference Citation Analysis]
34 Wang S, Zhang K. Glycosylated cellulose derivatives with regioselective distributions of pendant glucose moieties. Carbohydr Polym 2018;196:154-61. [PMID: 29891282 DOI: 10.1016/j.carbpol.2018.05.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
35 Liu X, Bai X, Li J, Wang C, Ren Q. Synthesis and characterization of amphiphilic graft copolymers with poly(ethylene glycol) as the hydrophilic backbone and poly(butyl methacrylate) as the hydrophobic graft chain. Colloid Polym Sci 2018;296:1545-54. [DOI: 10.1007/s00396-018-4369-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
36 Sekhar KPC, Adicherla H, Nayak RR. Impact of Glycolipid Hydrophobic Chain Length and Headgroup Size on Self-Assembly and Hydrophobic Guest Release. Langmuir 2018;34:8875-86. [DOI: 10.1021/acs.langmuir.8b01401] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
37 Karlsson J, Vaughan HJ, Green JJ. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu Rev Chem Biomol Eng 2018;9:105-27. [PMID: 29579402 DOI: 10.1146/annurev-chembioeng-060817-084055] [Cited by in Crossref: 96] [Cited by in F6Publishing: 106] [Article Influence: 19.2] [Reference Citation Analysis]
38 Maity A, Dey A, Gangopadhyay M, Das A. Water induced morphological transformation of a poly(aryl ether) dendron amphiphile: helical fibers to nanorods, as light-harvesting antenna systems. Nanoscale 2018;10:1464-73. [DOI: 10.1039/c7nr07663k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]