BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shirbin SJ, Ladewig K, Fu Q, Klimak M, Zhang X, Duan W, Qiao GG. Cisplatin-Induced Formation of Biocompatible and Biodegradable Polypeptide-Based Vesicles for Targeted Anticancer Drug Delivery. Biomacromolecules 2015;16:2463-74. [PMID: 26166192 DOI: 10.1021/acs.biomac.5b00692] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2022;10:1095598. [PMID: 36688039 DOI: 10.3389/fchem.2022.1095598] [Reference Citation Analysis]
2 Gineste S, Mingotaud C. Double-hydrophilic block copolymer-metal ion associations: Structures, properties and applications. Adv Colloid Interface Sci 2023;311:102808. [PMID: 36442323 DOI: 10.1016/j.cis.2022.102808] [Reference Citation Analysis]
3 Zhang Y, Song W, Lu Y, Xu Y, Wang C, Yu DG, Kim I. Recent Advances in Poly(α-L-glutamic acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022;12. [PMID: 35625562 DOI: 10.3390/biom12050636] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 36.0] [Reference Citation Analysis]
4 Liu K, Xiang J, Wang G, Xu H, Piao Y, Liu X, Tang J, Shen Y, Zhou Z. Linear-Dendritic Polymer-Platinum Complexes Forming Well-Defined Nanocapsules for Acid-Responsive Drug Delivery. ACS Appl Mater Interfaces 2021;13:44028-40. [PMID: 34499483 DOI: 10.1021/acsami.1c12156] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
5 Dong JH, Ma Y, Li R, Zhang WT, Zhang MQ, Meng FN, Ding K, Jiang HT, Gong YK. Smart MSN-Drug-Delivery System for Tumor Cell Targeting and Tumor Microenvironment Release. ACS Appl Mater Interfaces 2021;13:42522-32. [PMID: 34463488 DOI: 10.1021/acsami.1c14189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wang X, Song Z, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021;275:120913. [PMID: 34217020 DOI: 10.1016/j.biomaterials.2021.120913] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
7 Chen S, Zhang R, Guo Q, Nie J, Li Q, Cheng S, Ma C. Four triorganotin(IV) esters based on 3,5-bifluorobenzenetelluronic acid: Syntheses, structures, in vitro cytostatic activity and BSA-binding assessment. Inorganic Chemistry Communications 2021;125:108404. [DOI: 10.1016/j.inoche.2020.108404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Deng C, Zhang Q, Guo J, Zhao X, Zhong Z. Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Adv Drug Deliv Rev 2020;160:199-211. [PMID: 33137364 DOI: 10.1016/j.addr.2020.10.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
9 Cao Z, Li W, Liu R, Li C, Song Y, Liu G, Chen Y, Lu C, Lu A, Liu Y. pH-Responsive Fluorescence Enhanced Nanogel for Targeted Delivery of AUR and CDDP Against Breast Cancer. Int J Nanomedicine 2020;15:8369-82. [PMID: 33149581 DOI: 10.2147/IJN.S274842] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
10 Hua Y, Chen L, Hou C, Liu S, Pei Z, Lu Y. Supramolecular Vesicles Based on Amphiphilic Pillar[n]arenes for Smart Nano-Drug Delivery. Int J Nanomedicine 2020;15:5873-99. [PMID: 32848395 DOI: 10.2147/IJN.S255637] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
11 Mumtaz T, Qindeel M, Asim Ur Rehman, Tarhini M, Ahmed N, Elaissari A. Exploiting proteases for cancer theranostic through molecular imaging and drug delivery. Int J Pharm 2020;587:119712. [PMID: 32745499 DOI: 10.1016/j.ijpharm.2020.119712] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
12 Sohn H, Shin HW, Lee SM. Metal-Mediated Morphology Regulation of Self-Assembled Double-Hydrophilic Block Copolymers. ACS Macro Lett 2020;9:600-5. [PMID: 35648493 DOI: 10.1021/acsmacrolett.0c00120] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
13 Rasines Mazo A, Allison-logan S, Karimi F, Chan NJ, Qiu W, Duan W, O’brien-simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020;49:4737-834. [DOI: 10.1039/c9cs00738e] [Cited by in Crossref: 89] [Cited by in F6Publishing: 93] [Article Influence: 29.7] [Reference Citation Analysis]
14 Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev 2019;151-152:130-51. [PMID: 30690054 DOI: 10.1016/j.addr.2019.01.010] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 11.5] [Reference Citation Analysis]
15 Cheng C, Meng Y, Zhang Z, Li Y, Liu C, Zhang Q. pH responsible and fluorescent Cy5.5-PEG-g-A-HA/CDDP complex nanoparticles: synthesis, characterization, and application for targeted drug delivery. J Mater Sci Mater Med 2019;30:58. [PMID: 31127370 DOI: 10.1007/s10856-019-6260-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
16 Moreira T, Francisco R, Comsa E, Duban-Deweer S, Labas V, Teixeira-Gomes AP, Combes-Soia L, Marques F, Matos A, Favrelle A, Rousseau C, Zinck P, Falson P, Garcia MH, Preto A, Valente A. Polymer "ruthenium-cyclopentadienyl" conjugates - New emerging anti-cancer drugs. Eur J Med Chem 2019;168:373-84. [PMID: 30826512 DOI: 10.1016/j.ejmech.2019.02.061] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
17 Ranji-burachaloo H, Reyhani A, Gurr PA, Dunstan DE, Qiao GG. Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale 2019;11:5705-16. [DOI: 10.1039/c8nr09107b] [Cited by in Crossref: 73] [Cited by in F6Publishing: 76] [Article Influence: 18.3] [Reference Citation Analysis]
18 Liu B, Ranji-burachaloo H, Gurr PA, Goudeli E, Qiao GG. A nontoxic reversible thermochromic binary system via π–π stacking of sulfonephthaleins. J Mater Chem C 2019;7:9335-45. [DOI: 10.1039/c9tc02071c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
19 Cheng C, Meng Y, Zhang Z, Li Y, Zhang Q. Tumoral Acidic pH-Responsive cis-Diaminodichloroplatinum-Incorporated Cy5.5-PEG- g-A-HA Nanoparticles for Targeting Delivery of CDDP against Cervical Cancer. ACS Appl Mater Interfaces 2018;10:26882-92. [PMID: 30024147 DOI: 10.1021/acsami.8b07425] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
20 Jeong Y, Shin H, Kwon J, Lee S. Cisplatin-Encapsulated Polymeric Nanoparticles with Molecular Geometry-Regulated Colloidal Properties and Controlled Drug Release. ACS Appl Mater Interfaces 2018;10:23617-29. [DOI: 10.1021/acsami.8b06905] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
21 Tan J, Li C, Wang Q, Li S, Chen S, Zhang J, Wang PC, Ren L, Liang XJ. A Carrier-Free Nanostructure Based on Platinum(IV) Prodrug Enhances Cellular Uptake and Cytotoxicity. Mol Pharm 2018;15:1724-8. [PMID: 29522683 DOI: 10.1021/acs.molpharmaceut.8b00070] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
22 Zhou X, Su X, Zhou C. Preparation of diblock amphiphilic polypeptide nanoparticles for medical applications. European Polymer Journal 2018;100:132-6. [DOI: 10.1016/j.eurpolymj.2018.01.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
23 Liang L, Zhang X, Su X, Li J, Tian Y, Xue H, Xu H. 99m Tc-labeled oligomeric nanoparticles as potential agents for folate receptor-positive tumor targeting. J Labelled Comp Radiopharm 2018;61:54-60. [PMID: 29086447 DOI: 10.1002/jlcr.3577] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
24 Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2016;45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Cited by in Crossref: 110] [Cited by in F6Publishing: 111] [Article Influence: 22.0] [Reference Citation Analysis]
25 Ranji-burachaloo H, Fu Q, Gurr PA, Dunstan DE, Qiao GG. Improved Fenton Therapy Using Cancer Cell Hydrogen Peroxide. Aust J Chem 2018;71:826. [DOI: 10.1071/ch18281] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
26 Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017;5:8274-88. [PMID: 29430300 DOI: 10.1039/C7TB02199B] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
27 Ranji-burachaloo H, Karimi F, Xie K, Fu Q, Gurr PA, Dunstan DE, Qiao GG. MOF-Mediated Destruction of Cancer Using the Cell’s Own Hydrogen Peroxide. ACS Appl Mater Interfaces 2017;9:33599-608. [DOI: 10.1021/acsami.7b07981] [Cited by in Crossref: 117] [Cited by in F6Publishing: 122] [Article Influence: 19.5] [Reference Citation Analysis]
28 Dumoga S, Rai Y, Bhatt AN, Tiwari AK, Singh S, Mishra AK, Kakkar D. Block Copolymer Based Nanoparticles for Theranostic Intervention of Cervical Cancer: Synthesis, Pharmacokinetics, and in Vitro/in Vivo Evaluation in HeLa Xenograft Models. ACS Appl Mater Interfaces 2017;9:22195-211. [DOI: 10.1021/acsami.7b04982] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
29 Hou Y, Wang Y, Wang R, Bao W, Xi X, Sun Y, Yang S, Wei W, Lu H. Harnessing Phosphato-Platinum Bonding Induced Supramolecular Assembly for Systemic Cisplatin Delivery. ACS Appl Mater Interfaces 2017;9:17757-68. [PMID: 28481085 DOI: 10.1021/acsami.7b03686] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
30 Salahuddin N, Galal A. Improving chemotherapy drug delivery by nanoprecision tools. Nanostructures for Cancer Therapy 2017. [DOI: 10.1016/b978-0-323-46144-3.00004-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
31 Callari M, Wong S, Lu H, Aldrich-wright J, de Souza P, Stenzel MH. Drug induced self-assembly of triblock copolymers into polymersomes for the synergistic dual-drug delivery of platinum drugs and paclitaxel. Polym Chem 2017;8:6289-99. [DOI: 10.1039/c7py01162h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
32 Deshpande NU, Jayakannan M. Cisplatin-Stitched Polysaccharide Vesicles for Synergistic Cancer Therapy of Triple Antagonistic Drugs. Biomacromolecules 2017;18:113-26. [DOI: 10.1021/acs.biomac.6b01411] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
33 Wang Y, Wang L, Chen G, Gong S. Carboplatin-Complexed and cRGD-Conjugated Unimolecular Nanoparticles for Targeted Ovarian Cancer Therapy. Macromol Biosci 2017;17. [PMID: 27911475 DOI: 10.1002/mabi.201600292] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
34 Surnar B, Jayakannan M. Triple Block Nanocarrier Platform for Synergistic Cancer Therapy of Antagonistic Drugs. Biomacromolecules 2016;17:4075-85. [PMID: 27936725 DOI: 10.1021/acs.biomac.6b01608] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
35 Ke W, Li J, Zhao K, Zha Z, Han Y, Wang Y, Yin W, Zhang P, Ge Z. Modular Design and Facile Synthesis of Enzyme-Responsive Peptide-Linked Block Copolymers for Efficient Delivery of Doxorubicin. Biomacromolecules 2016;17:3268-76. [PMID: 27564064 DOI: 10.1021/acs.biomac.6b00997] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 6.6] [Reference Citation Analysis]
36 Shirbin SJ, Karimi F, Chan NJ, Heath DE, Qiao GG. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds. Biomacromolecules 2016;17:2981-91. [DOI: 10.1021/acs.biomac.6b00817] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
37 Heng C, Liu M, Wang P, Wang K, Zheng X, Fan D, Hui J, Zhang X, Wei Y. Preparation of silica nanoparticles based multifunctional therapeutic systems via one-step mussel inspired modification. Chemical Engineering Journal 2016;296:268-76. [DOI: 10.1016/j.cej.2016.03.079] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
38 Cheng Q, Liu Y. Multifunctional platinum-based nanoparticles for biomedical applications: Platinum-based nanoparticles for biomedical applications. WIREs Nanomed Nanobiotechnol 2017;9:e1410. [DOI: 10.1002/wnan.1410] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
39 Wang Y, Li Y, Thérien-Aubin H, Ma J, Zandstra PW, Kumacheva E. Two-dimensional arrays of cell-laden polymer hydrogel modules. Biomicrofluidics 2016;10:014110. [PMID: 26858822 DOI: 10.1063/1.4940430] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]