BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Du AW, Lu H, Stenzel MH. Core-Cross-Linking Accelerates Antitumor Activities of Paclitaxel-Conjugate Micelles to Prostate Multicellular Tumor Spheroids: A Comparison of 2D and 3D Models. Biomacromolecules 2015;16:1470-9. [PMID: 25857405 DOI: 10.1021/acs.biomac.5b00282] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Belkhir K, Cerlati O, Heaugwane D, Tosi A, Benkhaled BT, Brient PL, Chatard C, Graillot A, Catrouillet S, Balor S, Goudounèche D, Payré B, Laborie P, Lim JH, Putaux JL, Vicendo P, Gibot L, Lonetti B, Mingotaud AF, Lapinte V. Synthesis and Self-Assembly of UV-Cross-Linkable Amphiphilic Polyoxazoline Block Copolymers: Importance of Multitechnique Characterization. Langmuir 2022;38:16144-55. [PMID: 36516233 DOI: 10.1021/acs.langmuir.2c02896] [Reference Citation Analysis]
2 Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022;64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Reference Citation Analysis]
3 Carton F, Malatesta M. In Vitro Models of Biological Barriers for Nanomedical Research. IJMS 2022;23:8910. [DOI: 10.3390/ijms23168910] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Zhang L, Cao C, Kaushik N, Lai RY, Liao J, Wang G, Ariotti N, Jin D, Stenzel MH. Controlling the Biological Behaviors of Polymer-Coated Upconverting Nanoparticles by Adjusting the Linker Length of Estrone Ligands. Biomacromolecules 2022. [PMID: 35584062 DOI: 10.1021/acs.biomac.2c00265] [Reference Citation Analysis]
5 Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Mater Adv . [DOI: 10.1039/d1ma00961c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
6 Ahmed-Cox A, Pandzic E, Johnston ST, Heu C, McGhee J, Mansfeld FM, Crampin EJ, Davis TP, Whan RM, Kavallaris M. Spatio-temporal analysis of nanoparticles in live tumor spheroids impacted by cell origin and density. J Control Release 2021;341:661-75. [PMID: 34915071 DOI: 10.1016/j.jconrel.2021.12.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Ahmed-cox A, Pandzic E, Johnston ST, Heu C, Mcghee J, Mansfeld FM, Crampin EJ, Davis TP, Whan RM, Kavallaris M. Spatial-temporal analysis of nanoparticles in live tumor spheroids impacted by cell origin and density.. [DOI: 10.1101/2021.10.26.465839] [Reference Citation Analysis]
8 Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021;175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
9 Trivedi P, Liu R, Bi H, Xu C, Rosenholm JM, Åkerfelt M. 3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology. Int J Mol Sci 2021;22:6225. [PMID: 34207601 DOI: 10.3390/ijms22126225] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Cuggino JC, Picchio ML, Gugliotta A, Bürgi M, Ronco LI, Calderón M, Etcheverrigaray M, Alvarez Igarzabal CI, Minari RJ, Gugliotta LM. Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy. European Polymer Journal 2021;145:110237. [DOI: 10.1016/j.eurpolymj.2020.110237] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
11 McCarthy B, Cudykier A, Singh R, Levi-Polyachenko N, Soker S. Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids. Sci Rep 2021;11:1532. [PMID: 33452397 DOI: 10.1038/s41598-021-81122-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Abreu TR, Biscaia M, Gonçalves N, Fonseca NA, Moreira JN. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. Adv Exp Med Biol 2021;1295:271-99. [PMID: 33543464 DOI: 10.1007/978-3-030-58174-9_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Fontana F, Raimondi M, Marzagalli M, Sommariva M, Gagliano N, Limonta P. Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. Int J Mol Sci 2020;21:E6806. [PMID: 32948069 DOI: 10.3390/ijms21186806] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
14 Monteiro PF, Gulfam M, Monteiro CJ, Travanut A, Abelha TF, Pearce AK, Jerôme C, Grabowska AM, Clarke PA, Collins HM, Heery DM, Gershkovich P, Alexander C. Synthesis of micellar-like terpolymer nanoparticles with reductively-cleavable cross-links and evaluation of efficacy in 2D and 3D models of triple negative breast cancer. Journal of Controlled Release 2020;323:549-64. [DOI: 10.1016/j.jconrel.2020.04.049] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
15 Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020;12:E580. [PMID: 32585885 DOI: 10.3390/pharmaceutics12060580] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
16 Mó I, Sabino IJ, Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. The importance of spheroids in analyzing nanomedicine efficacy. Nanomedicine (Lond) 2020;15:1513-25. [PMID: 32552537 DOI: 10.2217/nnm-2020-0054] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
17 Noy JM, Chen F, Akhter DT, Houston ZH, Fletcher NL, Thurecht KJ, Stenzel MH. Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules 2020;21:2320-33. [PMID: 32343128 DOI: 10.1021/acs.biomac.0c00257] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
18 Li B, Chen T, Wang Z, Guo Z, Peña J, Zeng L, Xing J. A novel cross-linked nanoparticle with aggregation-induced emission properties for cancer cell imaging. J Mater Chem B 2020;8:2431-7. [PMID: 32104870 DOI: 10.1039/c9tb02701g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Raveendran R, Chen F, Kent B, Stenzel MH. Estrone-Decorated Polyion Complex Micelles for Targeted Melittin Delivery to Hormone-Responsive Breast Cancer Cells. Biomacromolecules 2020;21:1222-33. [DOI: 10.1021/acs.biomac.9b01681] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
20 Wang J, Li N, Cao L, Gao C, Zhang Y, Shuai Q, Xie J, Luo K, Yang J, Gu Z. DOX-loaded peptide dendritic copolymer nanoparticles for combating multidrug resistance by regulating the lysosomal pathway of apoptosis in breast cancer cells. J Mater Chem B 2020;8:1157-70. [PMID: 31951231 DOI: 10.1039/c9tb02130b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
21 Darrigues E, Nima ZA, Griffin RJ, Anderson JM, Biris AS, Rodriguez A. 3D cultures for modeling nanomaterial-based photothermal therapy. Nanoscale Horiz 2020;5:400-30. [PMID: 32118219 DOI: 10.1039/c9nh00628a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
22 Namivandi-Zangeneh R, Yang Y, Xu S, Wong EHH, Boyer C. Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils. Biomacromolecules 2020;21:262-72. [PMID: 31657209 DOI: 10.1021/acs.biomac.9b01278] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
23 Luo T, Han J, Zhao F, Pan X, Tian B, Ding X, Zhang J. Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy. Carbohydrate Polymers 2019;215:8-19. [DOI: 10.1016/j.carbpol.2019.03.064] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
24 Oudin A, Chauvin J, Gibot L, Rols M, Balor S, Goudounèche D, Payré B, Lonetti B, Vicendo P, Mingotaud A, Lapinte V. Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy. J Mater Chem B 2019;7:4973-82. [DOI: 10.1039/c9tb00118b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
25 Lai H, Lu M, Chen F, Lalevée J, Stenzel MH, Xiao P. Amphiphilic polymer coated nanodiamonds: a promising platform to deliver azonafide. Polym Chem 2019;10:1904-11. [DOI: 10.1039/c9py00055k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
26 Liu Y, Li Q, Xiong X, Huang Y, Zhou Z. Enhanced cellular uptake by non-endocytic pathway for tumor therapy. J Mater Chem B 2018;6:7411-9. [PMID: 32254742 DOI: 10.1039/c8tb01698d] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Zhang K, Liu J, Ma X, Lei L, Li Y, Yang H, Lei Z. Temperature, pH, and reduction triple-stimuli-responsive inner-layer crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 2018;135:46714. [DOI: 10.1002/app.46714] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
28 Mehnath S, Arjama M, Rajan M, Annamalai G, Jeyaraj M. Co-encapsulation of dual drug loaded in MLNPs: Implication on sustained drug release and effectively inducing apoptosis in oral carcinoma cells. Biomedicine & Pharmacotherapy 2018;104:661-71. [DOI: 10.1016/j.biopha.2018.05.096] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
29 Zhang K, Liu J, Guo Y, Li Y, Ma X, Lei Z. Synthesis of temperature, pH, light and dual-redox quintuple-stimuli-responsive shell-crosslinked polymeric nanoparticles for controlled release. Materials Science and Engineering: C 2018;87:1-9. [DOI: 10.1016/j.msec.2018.02.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
30 Ma Z, Zhu XX. Core Cross-linked Micelles Made of Glycopolymers Bearing Dopamine and Cholic Acid Pendants. Mol Pharmaceutics 2018;15:2348-54. [DOI: 10.1021/acs.molpharmaceut.8b00205] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
31 Seidi F, Jenjob R, Crespy D. Designing Smart Polymer Conjugates for Controlled Release of Payloads. Chem Rev 2018;118:3965-4036. [PMID: 29533067 DOI: 10.1021/acs.chemrev.8b00006] [Cited by in Crossref: 176] [Cited by in F6Publishing: 182] [Article Influence: 35.2] [Reference Citation Analysis]
32 Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. Small 2018;14:1702858. [DOI: 10.1002/smll.201702858] [Cited by in Crossref: 109] [Cited by in F6Publishing: 114] [Article Influence: 21.8] [Reference Citation Analysis]
33 Noy J, Lu H, Hogg PJ, Yang J, Stenzel M. Direct Polymerization of the Arsenic Drug PENAO to Obtain Nanoparticles with High Thiol-Reactivity and Anti-Cancer Efficiency. Bioconjugate Chem 2018;29:546-58. [DOI: 10.1021/acs.bioconjchem.8b00032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
34 Bao Y, Guégain E, Mougin J, Nicolas J. Self-stabilized, hydrophobic or PEGylated paclitaxel polymer prodrug nanoparticles for cancer therapy. Polym Chem 2018;9:687-98. [DOI: 10.1039/c7py01918a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
35 De Luca S, Chen F, Seal P, Stenzel MH, Smith SC. Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy. Biomacromolecules 2017;18:3665-77. [PMID: 28880549 DOI: 10.1021/acs.biomac.7b00657] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
36 Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, Nadagouda MN, Aminabhavi TM. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017;532:249-68. [PMID: 28882486 DOI: 10.1016/j.ijpharm.2017.09.005] [Cited by in Crossref: 131] [Cited by in F6Publishing: 138] [Article Influence: 21.8] [Reference Citation Analysis]
37 Pearson S, St Thomas C, Guerrero-santos R, D'agosto F. Opportunities for dual RDRP agents in synthesizing novel polymeric materials. Polym Chem 2017;8:4916-46. [DOI: 10.1039/c7py00344g] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
38 Sobczak-kupiec A, Iqbal MJ, Qureshi MZ, Mansoor Q, Nabavi SM, Purenovic J, Yaylim I, Farooqi AA, Ismail M. Role of TRAIL and miR-34a as Therapeutic Agents in Prostate Cancer: Increasing the Armory of Micro-Musketeers. Molecular Oncology: Underlying Mechanisms and Translational Advancements 2017. [DOI: 10.1007/978-3-319-53082-6_12] [Reference Citation Analysis]
39 Zhao J, Lu H, Wong S, Lu M, Xiao P, Stenzel MH. Influence of nanoparticle shapes on cellular uptake of paclitaxel loaded nanoparticles in 2D and 3D cancer models. Polym Chem 2017;8:3317-26. [DOI: 10.1039/c7py00385d] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 8.5] [Reference Citation Analysis]
40 Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017;8:4947-69. [DOI: 10.1039/c7py00559h] [Cited by in Crossref: 114] [Cited by in F6Publishing: 117] [Article Influence: 19.0] [Reference Citation Analysis]
41 Callari M, Wong S, Lu H, Aldrich-wright J, de Souza P, Stenzel MH. Drug induced self-assembly of triblock copolymers into polymersomes for the synergistic dual-drug delivery of platinum drugs and paclitaxel. Polym Chem 2017;8:6289-99. [DOI: 10.1039/c7py01162h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
42 Lu M, Wang Y, Zhao J, Lu H, Stenzel MH, Xiao P. PEG Grafted‐Nanodiamonds for the Delivery of Gemcitabine. Macromol Rapid Commun 2016;37:2023-9. [DOI: 10.1002/marc.201600344] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
43 Du AW, Lu H, Stenzel M. Stabilization of Paclitaxel-Conjugated Micelles by Cross-Linking with Cystamine Compromises the Antitumor Effects against Two- and Three-Dimensional Tumor Cellular Models. Mol Pharmaceutics 2016;13:3648-56. [DOI: 10.1021/acs.molpharmaceut.6b00410] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
44 Chang T, Gosain P, Stenzel MH, Lord MS. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)-based micelles and mechanisms of uptake in colon carcinoma cells. Colloids Surf B Biointerfaces 2016;144:257-64. [PMID: 27100852 DOI: 10.1016/j.colsurfb.2016.04.019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
45 Liu B, Wu C, He X, Zhuo R, Cheng S. Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment. Science Bulletin 2016;61:552-60. [DOI: 10.1007/s11434-016-1039-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
46 Lu H, Blunden BM, Scarano W, Lu M, Stenzel MH. Anti-metastatic effects of RAPTA-C conjugated polymeric micelles on two-dimensional (2D) breast tumor cells and three-dimensional (3D) multicellular tumor spheroids. Acta Biomater 2016;32:68-76. [PMID: 26689468 DOI: 10.1016/j.actbio.2015.12.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
47 Jiang Y, Lu H, Chen F, Callari M, Pourgholami M, Morris DL, Stenzel MH. PEGylated Albumin-Based Polyion Complex Micelles for Protein Delivery. Biomacromolecules 2016;17:808-17. [DOI: 10.1021/acs.biomac.5b01537] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 6.7] [Reference Citation Analysis]
48 Chang T, Trench D, Putnam J, Stenzel MH, Lord MS. Curcumin-Loading-Dependent Stability of PEGMEMA-Based Micelles Affects Endocytosis and Exocytosis in Colon Carcinoma Cells. Mol Pharm 2016;13:924-32. [PMID: 26755445 DOI: 10.1021/acs.molpharmaceut.5b00820] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 5.4] [Reference Citation Analysis]
49 Jiang Y, Lu H, Dag A, Hart-smith G, Stenzel MH. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. J Mater Chem B 2016;4:2017-27. [DOI: 10.1039/c5tb02576a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
50 Wang J, Yan J, Zhou H, Huang H, Zhang X, Tang H. Prodrug Micelles Based on Norbornene-Functional Poly(lactide)s Backbone for Redox-Responsive Release of Paclitaxel. Aust J Chem 2016;69:1140. [DOI: 10.1071/ch16100] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
51 Zhao S, Fan X, Li X, Lv X, Zhang W, Hu Z. Stable micelles formed through a stereocomplex of amphiphilic copolymers zwitterionic-(PLLA) 2 and MPEG-(PDLA) 2 for controlled drug delivery. RSC Adv 2016;6:63597-606. [DOI: 10.1039/c6ra10825c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
52 Till U, Gibot L, Vicendo P, Rols M, Gaucher M, Violleau F, Mingotaud A. Crosslinked polymeric self-assemblies as an efficient strategy for photodynamic therapy on a 3D cell culture. RSC Adv 2016;6:69984-98. [DOI: 10.1039/c6ra09013c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
53 Lili Y, Ruihua M, Li L, Fei L, Lin Y, Li S. Intracellular Doxorubicin Delivery of a Core Cross-linked, Redox-responsive Polymeric Micelles. Int J Pharm 2016;498:195-204. [PMID: 26706436 DOI: 10.1016/j.ijpharm.2015.12.042] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]