BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yue L, Wang J, Dai Z, Hu Z, Chen X, Qi Y, Zheng X, Yu D. pH-Responsive, Self-Sacrificial Nanotheranostic Agent for Potential In Vivo and In Vitro Dual Modal MRI/CT Imaging, Real-Time, and In Situ Monitoring of Cancer Therapy. Bioconjugate Chem 2017;28:400-9. [DOI: 10.1021/acs.bioconjchem.6b00562] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 14.2] [Reference Citation Analysis]
Number Citing Articles
1 Garcia-Peiro JI, Bonet-Aleta J, Santamaria J, Hueso JL. Platinum nanoplatforms: classic catalysts claiming a prominent role in cancer therapy. Chem Soc Rev 2022;51:7662-81. [PMID: 35983786 DOI: 10.1039/d2cs00518b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Gollavelli G, Ghule AV, Ling Y. Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites. Molecules 2022;27:5588. [DOI: 10.3390/molecules27175588] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
3 Zhao X, Wu J, Guo D, Hu S, Chen X, Hong L, Wang J, Ma J, Jiang Y, Niu T, Miao F, Li W, Wang B, Chen X, Song Y. Dynamic ginsenoside-sheltered nanocatalysts for safe ferroptosis-apoptosis combined therapy. Acta Biomater 2022:S1742-7061(22)00503-7. [PMID: 36007778 DOI: 10.1016/j.actbio.2022.08.026] [Reference Citation Analysis]
4 Motooka Y, Toyokuni S. Ferroptosis as ultimate target of cancer therapy. Antioxid Redox Signal 2022. [PMID: 35943875 DOI: 10.1089/ars.2022.0048] [Reference Citation Analysis]
5 Chen Y, Liao X, Jing P, Hu L, Yang Z, Yao Y, Liao C, Zhang S. Linoleic Acid-Glucosamine Hybrid for Endogenous Iron-Activated Ferroptosis Therapy in High-Grade Serous Ovarian Cancer. Mol Pharm 2022. [PMID: 35939328 DOI: 10.1021/acs.molpharmaceut.2c00333] [Reference Citation Analysis]
6 Laraba SR, Luo W, Rezzoug A, Zahra QUA, Zhang S, Wu B, Chen W, Xiao L, Yang Y, Wei J, Li Y. Graphene-based composites for biomedical applications. Green Chemistry Letters and Reviews 2022;15:724-748. [DOI: 10.1080/17518253.2022.2128698] [Reference Citation Analysis]
7 Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
8 Wang A, Qi W, Gao T, Tang X. Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine. Int J Mol Sci 2022;23:3038. [PMID: 35328454 DOI: 10.3390/ijms23063038] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Bonet-aleta J, Calzada-funes J, Hueso JL. Recent developments of iron-based nanosystems as enzyme-mimicking surrogates of interest in tumor microenvironment treatment. Nanomaterials for Biocatalysis 2022. [DOI: 10.1016/b978-0-12-824436-4.00006-x] [Reference Citation Analysis]
10 Bonet-aleta J, Encinas-gimenez M, Urriolabeitia E, Martin-duque P, Hueso JL, Santamaria J. Unveiling the interplay between homogeneous and heterogeneous catalytic mechanisms in copper–iron nanoparticles working under chemically relevant tumour conditions. Chem Sci . [DOI: 10.1039/d2sc01379g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Chang Z, Li C, Chang Y, Huang CF, Chan M, Hsiao M. Novel monodisperse FePt nanocomposites for T2-weighted magnetic resonance imaging: biomedical theranostics applications. Nanoscale Adv 2022;4:377-86. [DOI: 10.1039/d1na00613d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wang Y, Sun T, Jiang C. Nanodrug delivery systems for ferroptosis-based cancer therapy. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Xu J, Zhang H, Zhang Y, Zhang X, Wang T, Hong S, Wei W, Zhao T, Fang W. Controllable synthesis of variable-sized magnetic nanocrystals self-assembled into porous nanostructures for enhanced cancer chemo-ferroptosis therapy and MR imaging. Nanoscale Adv . [DOI: 10.1039/d1na00767j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews 2022;451:214267. [DOI: 10.1016/j.ccr.2021.214267] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
15 Hu Z, Wei Q, Zhang H, Tang W, Kou Y, Sun Y, Dai Z, Zheng X. Advances in FePt-involved nano-system design and application for bioeffect and biosafety. J Mater Chem B 2021. [PMID: 34951441 DOI: 10.1039/d1tb02221k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Luo L, Wang H, Tian W, Li X, Zhu Z, Huang R, Luo H. Targeting ferroptosis-based cancer therapy using nanomaterials: strategies and applications. Theranostics 2021;11:9937-52. [PMID: 34815796 DOI: 10.7150/thno.65480] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
17 Wang Y, Ye Z, Song G, Liu Z. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. Chem Res Chin Univ . [DOI: 10.1007/s40242-021-1315-z] [Reference Citation Analysis]
18 Kou Y, Dai Z, Cui P, Hu Z, Tian L, Zhang F, Duan H, Xia Q, Liu Q, Zheng X. A flowerlike FePt/MnO2/GOx-based cascade nanoreactor with sustainable O2 supply for synergistic starvation-chemodynamic anticancer therapy. J Mater Chem B 2021;9:8480-90. [PMID: 34553729 DOI: 10.1039/d1tb01539g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
19 Chan MH, Lu CN, Chung YL, Chang YC, Li CH, Chen CL, Wei DH, Hsiao M. Magnetically guided theranostics: montmorillonite-based iron/platinum nanoparticles for enhancing in situ MRI contrast and hepatocellular carcinoma treatment. J Nanobiotechnology 2021;19:308. [PMID: 34627267 DOI: 10.1186/s12951-021-01052-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
20 Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews 2021;441:213978. [DOI: 10.1016/j.ccr.2021.213978] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
21 Shakeri-zadeh A, Rezaeyan A, Sarikhani A, Ghaffari H, Samadian H, Khademi S, Ghaznavi H, Bulte JW. Folate receptor-targeted nanoprobes for molecular imaging of cancer: Friend or foe? Nano Today 2021;39:101173. [DOI: 10.1016/j.nantod.2021.101173] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
22 Jibin K, Victor M, Saranya G, Santhakumar H, Murali V, Maiti KK, Jayasree RS. Nanohybrids of Magnetically Intercalated Optical Metamaterials for Magnetic Resonance/Raman Imaging and In Situ Chemodynamic/Photothermal Therapy. ACS Appl Bio Mater 2021;4:5742-52. [PMID: 35006723 DOI: 10.1021/acsabm.1c00510] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
23 Sun Y, Wang Z, Zhang P, Wang J, Chen Y, Yin C, Wang W, Fan C, Sun D. Mesoporous silica integrated with Fe3O4 and palmitoyl ascorbate as a new nano-Fenton reactor for amplified tumor oxidation therapy. Biomater Sci 2020;8:7154-65. [PMID: 33155581 DOI: 10.1039/d0bm01738h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
24 Duan W, Liu G, Guo C, Qu Y. Preparation of Nano Materials Fe@Fe 3 O 4 and Its Application in Magnetic Resonance Imaging for Liver Functions. sci adv mater 2021;13:906-16. [DOI: 10.1166/sam.2021.3994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Liang D, Yang Y, Li G, Wang Q, Chen H, Deng X. Endogenous H2O2-Sensitive and Weak Acidic pH-Triggered Nitrogen-Doped Graphene Nanoparticles (N-GNMs) in the Tumor Microenvironment Serve as Peroxidase-Mimicking Nanozymes for Tumor-Specific Treatment. Materials (Basel) 2021;14:1933. [PMID: 33924339 DOI: 10.3390/ma14081933] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Wu X, Zhang H. Therapeutic strategies of iron-based nanomaterials for cancer therapy. Biomed Mater 2021;16:032003. [PMID: 33657014 DOI: 10.1088/1748-605X/abd0c4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 Yang J, Ding L, Yu L, Wang Y, Ge M, Jiang Q, Chen Y. Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis. Science Bulletin 2021;66:464-77. [DOI: 10.1016/j.scib.2020.10.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
28 Sokary R, Abu el-naga MN, Bekhit M, Atta S. A potential antibiofilm, antimicrobial and anticancer activities of chitosan capped gold nanoparticles prepared by γ–irradiation. Materials Technology. [DOI: 10.1080/10667857.2020.1863555] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
29 Pachaiappan R, Manavalan K. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Cancer. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-76263-6_1] [Reference Citation Analysis]
30 Toyokuni S, Kong Y, Cheng Z, Sato K, Hayashi S, Ito F, Jiang L, Yanatori I, Okazaki Y, Akatsuka S. Carcinogenesis as Side Effects of Iron and Oxygen Utilization: From the Unveiled Truth toward Ultimate Bioengineering. Cancers (Basel) 2020;12:E3320. [PMID: 33182727 DOI: 10.3390/cancers12113320] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
31 Chen Z, Chen B, He M, Hu B. Droplet-Splitting Microchip Online Coupled with Time-Resolved ICPMS for Analysis of Released Fe and Pt in Single Cells Treated with FePt Nanoparticles. Anal Chem 2020;92:12208-15. [PMID: 32786455 DOI: 10.1021/acs.analchem.0c01217] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
32 Yao X, Yang B, Wang S, Dai Z, Zhang D, Zheng X, Liu Q. A novel multifunctional FePt/BP nanoplatform for synergistic photothermal/photodynamic/chemodynamic cancer therapies and photothermally-enhanced immunotherapy. J Mater Chem B 2020;8:8010-21. [PMID: 32766612 DOI: 10.1039/d0tb00411a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 14.5] [Reference Citation Analysis]
33 Jiang M, Qiao M, Zhao C, Deng J, Li X, Zhou C. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res 2020;9:1569-84. [PMID: 32953528 DOI: 10.21037/tlcr-20-341] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 22.0] [Reference Citation Analysis]
34 Sepand MR, Ranjbar S, Kempson IM, Akbariani M, Muganda WCA, Müller M, Ghahremani MH, Raoufi M. Targeting non-apoptotic cell death in cancer treatment by nanomaterials: Recent advances and future outlook. Nanomedicine 2020;29:102243. [PMID: 32623018 DOI: 10.1016/j.nano.2020.102243] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
35 Xu Y, Qin Z, Ma J, Cao W, Zhang P. Recent progress in nanotechnology based ferroptotic therapies for clinical applications. Eur J Pharmacol 2020;880:173198. [PMID: 32473167 DOI: 10.1016/j.ejphar.2020.173198] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
36 Han Y, Gao S, Zhang Y, Ni Q, Li Z, Liang XJ, Zhang J. Metal-Based Nanocatalyst for Combined Cancer Therapeutics. Bioconjug Chem 2020;31:1247-58. [PMID: 32319762 DOI: 10.1021/acs.bioconjchem.0c00194] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
37 Wang G, Gao J, Fu Y, Ren Z, Huang J, Li X, Han G. Implantable composite fibres with Self-supplied H2O2 for localized chemodynamic therapy. Chemical Engineering Journal 2020;388:124211. [DOI: 10.1016/j.cej.2020.124211] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
38 Jia Y, Geng K, Cheng Y, Li Y, Chen Y, Wu R. Nanomedicine Particles Associated With Chemical Exchange Saturation Transfer Contrast Agents in Biomedical Applications. Front Chem 2020;8:326. [PMID: 32391334 DOI: 10.3389/fchem.2020.00326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Meng Y, Zhang D, Chen X, Dai Z, Yao X, Cui P, Yu D, Zhang G, Zheng X. FePt Nanoparticles Embedded in Metal–Organic Framework Nanoparticles for Tumor Imaging and Eradication. ACS Appl Nano Mater 2020;3:4494-503. [DOI: 10.1021/acsanm.0c00581] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
40 Peng X, Yang C, Kong X, Xiang Y, Dai W, Quan H. Multifunctional nanocomposites MGO/FU-MI inhibit the proliferation of tumor cells and enhance the effect of chemoradiotherapy in vivo and in vitro. Clin Transl Oncol 2020;22:1875-84. [PMID: 32170638 DOI: 10.1007/s12094-020-02331-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
41 Mohammadpour Z, Majidzadeh-A K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater Sci Eng 2020;6:1852-73. [PMID: 33455353 DOI: 10.1021/acsbiomaterials.9b01894] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 21.0] [Reference Citation Analysis]
42 Song S, Shen H, Wang Y, Chu X, Xie J, Zhou N, Shen J. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids and Surfaces B: Biointerfaces 2020;185:110596. [DOI: 10.1016/j.colsurfb.2019.110596] [Cited by in Crossref: 86] [Cited by in F6Publishing: 95] [Article Influence: 43.0] [Reference Citation Analysis]
43 Rajakumari R, Tharayil A, Thomas S, Kalarikkal N. Toxicity of graphene based nanomaterials—A general overview of origin, exposure and mechanisms. Analytical Applications of Graphene for Comprehensive Analytical Chemistry 2020. [DOI: 10.1016/bs.coac.2020.09.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Chen Z, Li Y, Airan R, Han Z, Xu J, Chan KWY, Xu Y, Bulte JWM, van Zijl PCM, McMahon MT, Zhou S, Liu G. CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quant Imaging Med Surg 2019;9:1579-91. [PMID: 31667143 DOI: 10.21037/qims.2019.06.10] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
45 Yang B, Liu Q, Yao X, Zhang D, Dai Z, Cui P, Zhang G, Zheng X, Yu D. FePt@MnO-Based Nanotheranostic Platform with Acidity-Triggered Dual-Ions Release for Enhanced MR Imaging-Guided Ferroptosis Chemodynamic Therapy. ACS Appl Mater Interfaces 2019;11:38395-404. [PMID: 31554396 DOI: 10.1021/acsami.9b11353] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 13.3] [Reference Citation Analysis]
46 Zhang D, Cui P, Dai Z, Yang B, Yao X, Liu Q, Hu Z, Zheng X. Tumor microenvironment responsive FePt/MoS2 nanocomposites with chemotherapy and photothermal therapy for enhancing cancer immunotherapy. Nanoscale 2019;11:19912-22. [PMID: 31599915 DOI: 10.1039/c9nr05684j] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 18.3] [Reference Citation Analysis]
47 Qiu L, Wang W, Li K, Peng Y, Lv G, Liu Q, Gao F, Seimbille Y, Xie M, Lin J. Rational design of caspase-responsive smart molecular probe for positron emission tomography imaging of drug-induced apoptosis. Theranostics 2019;9:6962-75. [PMID: 31660080 DOI: 10.7150/thno.35084] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
48 Liu C, Ewert KK, Wang N, Li Y, Safinya CR, Qiao W. A multifunctional lipid that forms contrast-agent liposomes with dual-control release capabilities for precise MRI-guided drug delivery. Biomaterials 2019;221:119412. [PMID: 31419656 DOI: 10.1016/j.biomaterials.2019.119412] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 13.0] [Reference Citation Analysis]
49 Dai C, Wang C, Hu R, Lin H, Liu Z, Yu L, Chen Y, Zhang B. Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. Biomaterials 2019;219:119374. [PMID: 31369897 DOI: 10.1016/j.biomaterials.2019.119374] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
50 Giannakis S. A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses. Applied Catalysis B: Environmental 2019;248:309-19. [DOI: 10.1016/j.apcatb.2019.02.025] [Cited by in Crossref: 64] [Cited by in F6Publishing: 55] [Article Influence: 21.3] [Reference Citation Analysis]
51 Hu R, Fang Y, Huo M, Yao H, Wang C, Chen Y, Wu R. Ultrasmall Cu2-xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials 2019;206:101-14. [DOI: 10.1016/j.biomaterials.2019.03.014] [Cited by in Crossref: 143] [Cited by in F6Publishing: 138] [Article Influence: 47.7] [Reference Citation Analysis]
52 Liu C, Yang B, Chen X, Hu Z, Dai Z, Yang D, Zheng X, She X, Liu Q. Capture and separation of circulating tumor cells using functionalized magnetic nanocomposites with simultaneous in situ chemotherapy. Nanotechnology 2019;30:285706. [DOI: 10.1088/1361-6528/ab0e25] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
53 Qian X, Zhang J, Gu Z, Chen Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 2019;211:1-13. [PMID: 31075521 DOI: 10.1016/j.biomaterials.2019.04.023] [Cited by in Crossref: 151] [Cited by in F6Publishing: 135] [Article Influence: 50.3] [Reference Citation Analysis]
54 Wang S, Liao H, Li F, Ling D. A mini-review and perspective on ferroptosis-inducing strategies in cancer therapy. Chinese Chemical Letters 2019;30:847-52. [DOI: 10.1016/j.cclet.2019.03.025] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
55 Ma S, Miao H, Luo Y, Sun Y, Tian X, Wang F, You C, Peng S, Tang G, Yang C, Sun W, Li S, Mao Y, Xu J, Xiao Y, Gong Y, Quan H, Xie C. FePt/GO Nanosheets Suppress Proliferation, Enhance Radiosensitization and Induce Autophagy of Human Non-Small Cell Lung Cancer Cells. Int J Biol Sci 2019;15:999-1009. [PMID: 31182920 DOI: 10.7150/ijbs.29805] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
56 Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-Based Smart Platforms for Combined Cancer Therapy. Adv Mater 2019;31:e1800662. [PMID: 30039878 DOI: 10.1002/adma.201800662] [Cited by in Crossref: 164] [Cited by in F6Publishing: 168] [Article Influence: 54.7] [Reference Citation Analysis]
57 Zhang X, Guo S, Yang Y, Xue X, Wang J. Ferroptosis in Cancer Therapy. Ferroptosis in Health and Disease 2019. [DOI: 10.1007/978-3-030-26780-3_18] [Reference Citation Analysis]
58 Liu H, Ge J, Ma E, Yang L. Advanced biomaterials for biosensor and theranostics. Biomaterials in Translational Medicine. Elsevier; 2019. pp. 213-55. [DOI: 10.1016/b978-0-12-813477-1.00010-4] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
59 Li Y, Wang X, Yan J, Liu Y, Yang R, Pan D, Wang L, Xu Y, Li X, Yang M. Nanoparticle ferritin-bound erastin and rapamycin: a nanodrug combining autophagy and ferroptosis for anticancer therapy. Biomater Sci 2019;7:3779-87. [DOI: 10.1039/c9bm00653b] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 16.0] [Reference Citation Analysis]
60 Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG. Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction. ACS Nano 2018;12:11819-37. [PMID: 30457834 DOI: 10.1021/acsnano.8b07635] [Cited by in Crossref: 314] [Cited by in F6Publishing: 324] [Article Influence: 78.5] [Reference Citation Analysis]
61 Tian X, Liu S, Zhu J, Qian Z, Bai L, Pan Y. Biofunctional magnetic hybrid nanomaterials for theranostic applications. Nanotechnology 2019;30:032002. [DOI: 10.1088/1361-6528/aaebcc] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
62 Reeβing F, Szymanski W. Following nanomedicine activation with magnetic resonance imaging: why, how, and what's next? Curr Opin Biotechnol 2019;58:9-18. [PMID: 30390536 DOI: 10.1016/j.copbio.2018.10.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
63 Deng Y, Tian X, Lu S, Xie M, Hu H, Zhang R, Lv F, Cheng L, Gu H, Zhao Y, Pan Y. Fabrication of Multifoliate PtRu Bimetallic Nanocomplexes for Computed Tomography Imaging and Enhanced Synergistic Thermoradiotherapy. ACS Appl Mater Interfaces 2018;10:31106-13. [DOI: 10.1021/acsami.8b11507] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
64 Wu M, Shu J. Multimodal Molecular Imaging: Current Status and Future Directions. Contrast Media Mol Imaging 2018;2018:1382183. [PMID: 29967571 DOI: 10.1155/2018/1382183] [Cited by in Crossref: 53] [Cited by in F6Publishing: 63] [Article Influence: 13.3] [Reference Citation Analysis]
65 Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Zhang Q, Lv J, Wu J. Advances on graphene-based nanomaterials for biomedical applications. Mater Sci Eng C Mater Biol Appl 2018;90:764-80. [PMID: 29853147 DOI: 10.1016/j.msec.2018.05.018] [Cited by in Crossref: 83] [Cited by in F6Publishing: 89] [Article Influence: 20.8] [Reference Citation Analysis]
66 Li D, Deng M, Yu Z, Liu W, Zhou G, Li W, Wang X, Yang D, Zhang W. Biocompatible and Stable GO-Coated Fe 3 O 4 Nanocomposite: A Robust Drug Delivery Carrier for Simultaneous Tumor MR Imaging and Targeted Therapy. ACS Biomater Sci Eng 2018;4:2143-54. [DOI: 10.1021/acsbiomaterials.8b00029] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
67 Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 2018;12:2106-21. [PMID: 29462554 DOI: 10.1021/acsnano.7b07252] [Cited by in Crossref: 94] [Cited by in F6Publishing: 100] [Article Influence: 23.5] [Reference Citation Analysis]
68 Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging Strategies of Cancer Therapy Based on Ferroptosis. Adv Mater 2018;30:e1704007. [PMID: 29356212 DOI: 10.1002/adma.201704007] [Cited by in Crossref: 285] [Cited by in F6Publishing: 309] [Article Influence: 71.3] [Reference Citation Analysis]
69 Negut I, Grumezescu V, Sima LE, Axente E. Recent advances of graphene family nanomaterials for nanomedicine. Fullerens, Graphenes and Nanotubes 2018. [DOI: 10.1016/b978-0-12-813691-1.00011-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
70 Ranji-burachaloo H, Fu Q, Gurr PA, Dunstan DE, Qiao GG. Improved Fenton Therapy Using Cancer Cell Hydrogen Peroxide. Aust J Chem 2018;71:826. [DOI: 10.1071/ch18281] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
71 Yue L, Dai Z, Chen X, Liu C, Hu Z, Song B, Zheng X. Development of a novel FePt-based multifunctional ferroptosis agent for high-efficiency anticancer therapy. Nanoscale 2018;10:17858-64. [DOI: 10.1039/c8nr05150j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
72 Masoudipour E, Kashanian S, Maleki N, Karamyan A, Omidfar K. A novel intracellular pH-responsive formulation for FTY720 based on PEGylated graphene oxide nano-sheets. Drug Dev Ind Pharm 2018;44:99-108. [PMID: 28956455 DOI: 10.1080/03639045.2017.1386194] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
73 Ranji-burachaloo H, Karimi F, Xie K, Fu Q, Gurr PA, Dunstan DE, Qiao GG. MOF-Mediated Destruction of Cancer Using the Cell’s Own Hydrogen Peroxide. ACS Appl Mater Interfaces 2017;9:33599-608. [DOI: 10.1021/acsami.7b07981] [Cited by in Crossref: 117] [Cited by in F6Publishing: 105] [Article Influence: 23.4] [Reference Citation Analysis]
74 Huang G, Chen X, Wang C, Zheng H, Huang Z, Chen D, Xie H. Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications. RSC Adv 2017;7:47840-7. [DOI: 10.1039/c7ra09002a] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 12.6] [Reference Citation Analysis]