BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yoon HY, Jeon S, You DG, Park JH, Kwon IC, Koo H, Kim K. Inorganic Nanoparticles for Image-Guided Therapy. Bioconjugate Chem 2017;28:124-34. [DOI: 10.1021/acs.bioconjchem.6b00512] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Han J, Lee YY, Shin HE, Han J, Kang JM, James Wang C, Park J, Kim S, Yoon J, Kwon H, Park D, Park T, Choy YB, Kim D, Kim T, Min J, Kim I, Park CG, Han DK, Park W. Image-guided in situ cancer vaccination with combination of multi-functional nano-adjuvant and an irreversible electroporation technique. Biomaterials 2022;289:121762. [DOI: 10.1016/j.biomaterials.2022.121762] [Reference Citation Analysis]
2 Siddique S, Chow JCL. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. Nanomaterials 2022;12:2826. [DOI: 10.3390/nano12162826] [Reference Citation Analysis]
3 Kim MA, Lee CM. NIR-Mediated drug release and tumor theranostics using melanin-loaded liposomes. Biomater Res 2022;26:22. [PMID: 35659113 DOI: 10.1186/s40824-022-00270-w] [Reference Citation Analysis]
4 Roy A, Datta S, Roy M, Alghamdi S, Rajab BS, Babalghith AO, Islam MR, Velmurugan P. Nanomaterials and Bioactive Compounds against SARS-CoV-2. Journal of Nanomaterials 2022;2022:1-13. [DOI: 10.1155/2022/4568443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Roy I, Krishnan S, Kabashin AV, Zavestovskaya IN, Prasad PN. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS Nano 2022. [PMID: 35294165 DOI: 10.1021/acsnano.1c10550] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Paliwal H, Parihar A, Prajapati BG. Current State-of-the-Art and New Trends in Self-Assembled Nanocarriers as Drug Delivery Systems. Front Nanotechnol 2022;4:836674. [DOI: 10.3389/fnano.2022.836674] [Reference Citation Analysis]
7 Zhu J, Zhang Z, Wang R, Zhong K, Zhang K, Zhang N, Liu W, Feng F, Qu W. Review of Natural Phytochemical-Based Self-Assembled Nanostructures for Applications in Medicine. ACS Appl Nano Mater 2022;5:3146-69. [DOI: 10.1021/acsanm.2c00056] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Deliv Rev 2022;181:114083. [PMID: 34929251 DOI: 10.1016/j.addr.2021.114083] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 16.0] [Reference Citation Analysis]
9 Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022;12:457. [DOI: 10.3390/nano12030457] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 20.0] [Reference Citation Analysis]
10 Khlebtsov B, Burov A, Pylaev T, Savkina A, Prikhozhdenko E, Bratashov D, Khlebtsov N. Improving SERS bioimaging of subcutaneous phantom in vivo with optical clearing. J Biophotonics 2021;:e202100281. [PMID: 34856066 DOI: 10.1002/jbio.202100281] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021;:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Loman-Cortes P, Binte Huq T, Vivero-Escoto JL. Use of Polyhedral Oligomeric Silsesquioxane (POSS) in Drug Delivery, Photodynamic Therapy and Bioimaging. Molecules 2021;26:6453. [PMID: 34770861 DOI: 10.3390/molecules26216453] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Das P, Jana NR. Biomedical Applications of Functional Polyaspartamide-Based Materials. ACS Appl Polym Mater 2021;3:4791-811. [DOI: 10.1021/acsapm.1c00785] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Chen Z, Pascal S, Daurat M, Lichon L, Nguyen C, Godefroy A, Durand D, Ali LMA, Bettache N, Gary-Bobo M, Arnoux P, Longevial JF, D'Aléo A, Marchand G, Jacquemin D, Siri O. Modified Indulines: From Dyestuffs to In Vivo Theranostic Agents. ACS Appl Mater Interfaces 2021;13:30337-49. [PMID: 34159778 DOI: 10.1021/acsami.1c05933] [Reference Citation Analysis]
15 Ghaemi F, Amiri A, Bajuri MY, Yuhana NY, Ferrara M. Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. Sustain Cities Soc 2021;72:103046. [PMID: 34055576 DOI: 10.1016/j.scs.2021.103046] [Reference Citation Analysis]
16 Gao Z, Li C, Shen J, Ding D. Organic optical agents for image-guided combined cancer therapy. Biomed Mater 2021;16. [PMID: 33873169 DOI: 10.1088/1748-605X/abf980] [Reference Citation Analysis]
17 Sharma S, Lamichhane N, Parul, Sen T, Roy I. Iron oxide nanoparticles conjugated with organic optical probes for in vivo diagnostic and therapeutic applications. Nanomedicine (Lond) 2021;16:943-62. [PMID: 33913338 DOI: 10.2217/nnm-2020-0442] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Zhang Y, Li X, Zhang Y, Wei J, Wang W, Dong C, Xue Y, Liu M, Pei R. Engineered Fe 3 O 4 -based nanomaterials for diagnosis and therapy of cancer. New J Chem 2021;45:7918-41. [DOI: 10.1039/d1nj00419k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Prasad R, Jain N, Conde J, Srivastava R. Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances 2020;8:100087. [DOI: 10.1016/j.mtadv.2020.100087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
20 Lim S, Yoon HY, Park SJ, Song S, Shim MK, Yang S, Kang SW, Lim DK, Kim BS, Moon SH, Kim K. Predicting in vivo therapeutic efficacy of bioorthogonally labeled endothelial progenitor cells in hind limb ischemia models via non-invasive fluorescence molecular tomography. Biomaterials 2021;266:120472. [PMID: 33120201 DOI: 10.1016/j.biomaterials.2020.120472] [Reference Citation Analysis]
21 Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020;63:14119-50. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
22 Nakamura M, Oyane A, Kuroiwa K, Kosuge H. Fabrication of gold-calcium phosphate composite nanoparticles through coprecipitation mediated by amino-terminated polyethylene glycol. Colloids Surf B Biointerfaces 2020;194:111169. [PMID: 32554258 DOI: 10.1016/j.colsurfb.2020.111169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Itani R, Tobaiqy M, Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics 2020;10:5932-42. [PMID: 32483428 DOI: 10.7150/thno.46691] [Cited by in Crossref: 75] [Cited by in F6Publishing: 76] [Article Influence: 37.5] [Reference Citation Analysis]
24 Han D, Dong X, Zheng D, Nao J. MiR-124 and the Underlying Therapeutic Promise of Neurodegenerative Disorders. Front Pharmacol 2019;10:1555. [PMID: 32009959 DOI: 10.3389/fphar.2019.01555] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
25 Xu F, Li X, Chen H, Jian M, Sun Y, Liu G, Ma L, Wang Z. Synthesis of heteronanostructures for multimodality molecular imaging-guided photothermal therapy. J Mater Chem B 2020;8:10136-45. [DOI: 10.1039/d0tb02136a] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wang H, Jia Q, Liu W, Nan F, Zheng X, Ding Y, Ren H, Wu J, Ge J. Hypocrellin Derivative‐Loaded Calcium Phosphate Nanorods as NIR Light‐Triggered Phototheranostic Agents with Enhanced Tumor Accumulation for Cancer Therapy. ChemMedChem 2019;15:177-81. [DOI: 10.1002/cmdc.201900512] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Zhang X, Zhang T, Ma X, Wang Y, Lu Y, Jia D, Huang X, Chen J, Xu Z, Wen F. The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy. Asian J Pharm Sci 2020;15:605-16. [PMID: 33193863 DOI: 10.1016/j.ajps.2019.10.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
28 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 21.7] [Reference Citation Analysis]
29 Sivasubramanian M, Chuang YC, Chen NT, Lo LW. Seeing Better and Going Deeper in Cancer Nanotheranostics. Int J Mol Sci 2019;20:E3490. [PMID: 31315232 DOI: 10.3390/ijms20143490] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
30 Luchini A, Vitiello G. Understanding the Nano-bio Interfaces: Lipid-Coatings for Inorganic Nanoparticles as Promising Strategy for Biomedical Applications. Front Chem 2019;7:343. [PMID: 31165058 DOI: 10.3389/fchem.2019.00343] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
31 Nance E. Careers in nanomedicine and drug delivery. Adv Drug Deliv Rev 2019;144:180-9. [PMID: 31260712 DOI: 10.1016/j.addr.2019.06.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
32 Jenni S, Sour A. Molecular Theranostic Agents for Photodynamic Therapy (PDT) and Magnetic Resonance Imaging (MRI). Inorganics 2019;7:10. [DOI: 10.3390/inorganics7010010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
33 Kigen G, Edwards G. Enhancement of saquinavir absorption and accumulation through the formation of solid drug nanoparticles. BMC Pharmacol Toxicol 2018;19:79. [PMID: 30509316 DOI: 10.1186/s40360-018-0275-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Dubreil C, Sainte Catherine O, Lalatonne Y, Journé C, Ou P, van Endert P, Motte L. Tolerogenic Iron Oxide Nanoparticles in Type 1 Diabetes: Biodistribution and Pharmacokinetics Studies in Nonobese Diabetic Mice. Small 2018;14:1802053. [DOI: 10.1002/smll.201802053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
35 Zheng Y, Liu W, Qin Z, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-Conjugated Gold Nanoclusters as Nanoantibiotics for Combating Multidrug-Resistant Superbugs. Bioconjugate Chem 2018;29:3094-103. [DOI: 10.1021/acs.bioconjchem.8b00452] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
36 Halamoda-Kenzaoui B, Holzwarth U, Roebben G, Bogni A, Bremer-Hoffmann S. Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1531. [PMID: 29923692 DOI: 10.1002/wnan.1531] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 9.5] [Reference Citation Analysis]
37 Lee H, Benjamin CE, Nowak CM, Tuong LH, Welch RP, Chen Z, Dharmarwardana M, Murray KW, Bleris L, D'Arcy S, Gassensmith JJ. Regulating the Uptake of Viral Nanoparticles in Macrophage and Cancer Cells via a pH Switch. Mol Pharm 2018;15:2984-90. [PMID: 29787282 DOI: 10.1021/acs.molpharmaceut.8b00348] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
38 Zhao X, Deng L, Deng H, Dong A, Wang W, Zhang J. In Situ Template Polymerization to Prepare Liposome-Coated PDMAEMA Nanogels with Controlled Size, High Stability, Low Cytotoxicity, and Responsive Drug Release for Intracellular DOX Release. Macromol Chem Phys 2018;219:1800071. [DOI: 10.1002/macp.201800071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Bhattarai P, Hameed S, Dai Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale 2018;10:5393-423. [DOI: 10.1039/c7nr09612g] [Cited by in Crossref: 34] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
40 Shi X, Bai S, Yang C, Ma X, Hou M, Chen J, Xue P, Li CM, Kang Y, Xu Z. Improving the carrier stability and drug loading of unimolecular micelle-based nanotherapeutics for acid-activated drug delivery and enhanced antitumor therapy. J Mater Chem B 2018;6:5549-61. [DOI: 10.1039/c8tb01384e] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
41 Shen Y, Sun Y, Yan R, Chen E, Wang H, Ye D, Xu J, Chen H. Rational engineering of semiconductor QDs enabling remarkable 1 O 2 production for tumor-targeted photodynamic therapy. Biomaterials 2017;148:31-40. [DOI: 10.1016/j.biomaterials.2017.09.026] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
42 Liu J, Chen H, Fu Y, Li X, Chen Y, Zhang H, Wang Z. Fabrication of multifunctional ferric oxide nanoparticles for tumor-targeted magnetic resonance imaging and precise photothermal therapy with magnetic field enhancement. J Mater Chem B 2017;5:8554-62. [PMID: 32264523 DOI: 10.1039/c7tb01959a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
43 Chen Z, Boyd SD, Calvo JS, Murray KW, Mejia GL, Benjamin CE, Welch RP, Winkler DD, Meloni G, D'Arcy S, Gassensmith JJ. Fluorescent Functionalization across Quaternary Structure in a Virus-like Particle. Bioconjug Chem 2017;28:2277-83. [PMID: 28787574 DOI: 10.1021/acs.bioconjchem.7b00305] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]