BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2020;92:431-54. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Cited by in Crossref: 205] [Cited by in F6Publishing: 214] [Article Influence: 51.3] [Reference Citation Analysis]
Number Citing Articles
1 Li Z, Xu H, Zhang Z, Miao X. DNA tetrahedral scaffold-corbelled 3D DNAzyme walker for electrochemiluminescent aflatoxin B(1) detection. Food Chem 2023;407:135049. [PMID: 36493494 DOI: 10.1016/j.foodchem.2022.135049] [Reference Citation Analysis]
2 Wei Y, Qi H, Zhang C. Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis. Chem Commun (Camb) 2023;59:3507-22. [PMID: 36820650 DOI: 10.1039/d2cc06930j] [Reference Citation Analysis]
3 Wang Y, Shu J, Lyu A, Wang M, Hu C, Cui H. Zn2+-Modified Nonmetal Porphyrin-Based Metal–Organic Frameworks with Improved Electrochemiluminescence for Nanoscale Exosome Detection. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c05273] [Reference Citation Analysis]
4 Hu X, Yu S, Wang C, Zhang X, Pan J, Ju H. Electrochemiluminescence Imaging at a Single Nanoparticle Scale to Elucidate Diffusion-Accelerated Charge Transfer and Monitor Cell Permeability. Anal Chem 2023;95:4496-502. [PMID: 36821703 DOI: 10.1021/acs.analchem.2c05250] [Reference Citation Analysis]
5 Gou X, Xing Z, Ma C, Zhu J. A Close Look at Mechanism, Application, and Opportunities of Electrochemiluminescence Microscopy. Chemical & Biomedical Imaging 2023. [DOI: 10.1021/cbmi.2c00007] [Reference Citation Analysis]
6 Ben Trad F, Delacotte J, Guille-collignon M, Lemaître F, Arbault S, Sojic N, Burlina F, Labbé E, Buriez O. Electrochemiluminescence Imaging of Liposome Permeabilization by an Antimicrobial Peptide: Melittin. Chemical & Biomedical Imaging 2023. [DOI: 10.1021/cbmi.3c00003] [Reference Citation Analysis]
7 Qin X, Yang L, Zhan Z, Cieplechowicz E, Chu K, Zhang C, Jahanghiri S, Welch GC, Ding Z. A graphene-like N-annulated perylene diimide dimer compound for highly efficient electrochemiluminescence. Electrochimica Acta 2023. [DOI: 10.1016/j.electacta.2023.142226] [Reference Citation Analysis]
8 Wu K, Zheng Y, Chen R, Zhou Z, Liu S, Shen Y, Zhang Y. Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosens Bioelectron 2023;223:115031. [PMID: 36571992 DOI: 10.1016/j.bios.2022.115031] [Reference Citation Analysis]
9 Zhang H, Zhou X, Zhang F, Xia J, Wang Z. Ultrasound-pretreatment combined with Ti(3)C(2)-TiO(2)-AuNPs enhancing the electrogenerated chemiluminescence of the air-saturated luminol for exosomes detection. Ultrason Sonochem 2023;94:106330. [PMID: 36805412 DOI: 10.1016/j.ultsonch.2023.106330] [Reference Citation Analysis]
10 Voci S, Clarke TB, Dick JE. Abiotic microcompartments form when neighbouring droplets fuse: an electrochemiluminescence investigation. Chem Sci 2023;14:2336-41. [PMID: 36873831 DOI: 10.1039/d2sc06553c] [Reference Citation Analysis]
11 Liu G, Wang Z, Lei C, Wang F. An Electrochemiluminescence Imaging Sensor for the Analysis of Lactate in Foods Via A Single Gold Microsphere. Journal of Food Composition and Analysis 2023. [DOI: 10.1016/j.jfca.2023.105270] [Reference Citation Analysis]
12 Zhou P, Ding L, Yan Y, Wang Y, Su B. Recent advances in label-free imaging of cell-matrix adhesions. Chem Commun (Camb) 2023;59:2341-51. [PMID: 36744880 DOI: 10.1039/d2cc06499e] [Reference Citation Analysis]
13 Qin X, Gao J, Jin HJ, Li ZQ, Xia XH. Closed Bipolar Electrode Array for Optical Reporting Reaction-Coupled Electrochemical Sensing and Imaging. Chemistry 2023;29:e202202687. [PMID: 36316589 DOI: 10.1002/chem.202202687] [Reference Citation Analysis]
14 Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023;149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Reference Citation Analysis]
15 Chen J, Dai F, Liu H, He Z, Gao H, Liu G. Visualization analysis of glucose, lactate and cholesterol based on an electrochemiluminescent biosensor array. J Mater Sci: Mater Electron 2023;34:415. [DOI: 10.1007/s10854-023-09852-3] [Reference Citation Analysis]
16 Sobhanie E, Hosseini M, Faridbod F, Reza Ganjali M. Sensitive detection of H2O2 released from cancer cells with electrochemiluminescence sensor based on electrochemically prepared polypyrrole@Ce: Dy tungstate/polyluminol. Journal of Electroanalytical Chemistry 2023. [DOI: 10.1016/j.jelechem.2023.117244] [Reference Citation Analysis]
17 Huang X, Li B, Lu Y, Liu Y, Wang S, Sojic N, Jiang D, Liu B. Direct Visualization of Nanoconfinement Effect on Nanoreactor via Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2023;62:e202215078. [PMID: 36478505 DOI: 10.1002/anie.202215078] [Reference Citation Analysis]
18 Ma C, Zhang Z, Tan T, Zhu JJ. Recent Progress in Plasmonic based Electrochemiluminescence Biosensors: A Review. Biosensors (Basel) 2023;13. [PMID: 36831966 DOI: 10.3390/bios13020200] [Reference Citation Analysis]
19 Huang J, Dong R, Habibul M, Zhang Y, Guan M, Li G. An electrochemiluminescence aptasensor based on poly(aniline-luminol)/graphene oxide/chitosan for ultra-sensitive detection of Hg2+. Polym Bull 2023. [DOI: 10.1007/s00289-023-04687-8] [Reference Citation Analysis]
20 Hou Y, Fang Y, Zhou Z, Hong Q, Li W, Yang H, Wu K, Xu Y, Cao X, Han D, Liu S, Shen Y, Zhang Y. Growth of Robust Carbon Nitride Films by Double Crystallization with Exceptionally Boosted Electrochemiluminescence for Visual DNA Detection. Advanced Optical Materials 2023. [DOI: 10.1002/adom.202202737] [Reference Citation Analysis]
21 Chen AL, Wang XY, Zhang Q, Bao N, Ding SN. Sandwich-Type Electrochemiluminescence Immunosensor Based on CDs@dSiO(2) Nanoparticles as Nanoprobe and Co-Reactant. Biosensors (Basel) 2023;13. [PMID: 36671968 DOI: 10.3390/bios13010133] [Reference Citation Analysis]
22 Dong J, Feng J. Electrochemiluminescence from Single Molecule to Imaging. Anal Chem 2023;95:374-87. [PMID: 36625110 DOI: 10.1021/acs.analchem.2c04663] [Reference Citation Analysis]
23 Gao X, Jiang G, Gao C, Prudnikau A, Hübner R, Zhan J, Zou G, Eychmüller A, Cai B. Interparticle Charge-Transport-Enhanced Electrochemiluminescence of Quantum-Dot Aerogels. Angew Chem Int Ed Engl 2023;62:e202214487. [PMID: 36347831 DOI: 10.1002/anie.202214487] [Reference Citation Analysis]
24 Wang Q, Wang B, Shi D, Li F, Ling D. Cerium Oxide Nanoparticles‐Based Optical Biosensors for Biomedical Applications. Advanced Sensor Research 2023. [DOI: 10.1002/adsr.202200065] [Reference Citation Analysis]
25 Lu Y, Han S, Xi Y, Yang S, Zhu T, Niu B, Li F. TiO(2) nanoparticles modified graphitic carbon nitride with potential-resolved multicolor electrochemiluminescence and application for sensitive sensing of rutin. Anal Bioanal Chem 2023;415:221-33. [PMID: 36326858 DOI: 10.1007/s00216-022-04406-8] [Reference Citation Analysis]
26 Li Q, Xu K, Zhang H, Huang Z, Xu C, Zhou Z, Peng H, Shi L. Ultrasensitive Electrochemiluminescence Immunoassay Based on Signal Amplification of 0D Au-2D WS(2) Nano-Hybrid Materials. Biosensors (Basel) 2022;13. [PMID: 36671893 DOI: 10.3390/bios13010058] [Reference Citation Analysis]
27 Chen R, Wang X, Wu K, Liu S, Zhang Y. Voltammetric Study and Modeling of the Electrochemical Oxidation Process and the Adsorption Effects of Luminol and Luminol Derivatives on Glassy Carbon Electrodes. Anal Chem 2022;94:17625-33. [PMID: 36475634 DOI: 10.1021/acs.analchem.2c04297] [Reference Citation Analysis]
28 Han Z, Deng Y, Liu X, Zhang P, Lu X. Study on the Electrochemiluminescence of Pentaphenylpyrrole in the Aqueous Phase Based on Structure-Regulated Strategy. Anal Chem 2022;94:17709-15. [PMID: 36475658 DOI: 10.1021/acs.analchem.2c04646] [Reference Citation Analysis]
29 Beladi-Mousavi SM, Salinas G, Bouffier L, Sojic N, Kuhn A. Wireless electrochemical light emission in ultrathin 2D nanoconfinements. Chem Sci 2022;13:14277-84. [PMID: 36545138 DOI: 10.1039/d2sc04670a] [Reference Citation Analysis]
30 Zhu L, Yu L, Yang X. Electrochemiluminescence Cascade Amplification Platform for Detection of Dual-microRNA and Operation of Concatenated Logic Circuit. Anal Chem 2022;94:17279-86. [PMID: 36448919 DOI: 10.1021/acs.analchem.2c04242] [Reference Citation Analysis]
31 Du L, Zhang H, Wang Z, Zhuang T, Wang Z. Boosting the electrochemiluminescence of luminol by high-intensity focused ultrasound pretreatment combined with 1T/2H MoS(2) catalysis to construct a sensitive sensing platform. Ultrason Sonochem 2023;92:106264. [PMID: 36521209 DOI: 10.1016/j.ultsonch.2022.106264] [Reference Citation Analysis]
32 Tao Q, Tang N, Ouyang S, Jiang Y, Luo Y, Liu Y, Xiong X. Rapid Visual Screening of OTA Based on Multicolor Electrochemiluminescence. Food Anal Methods 2022. [DOI: 10.1007/s12161-022-02436-7] [Reference Citation Analysis]
33 Yang Q, Huang X, Gao B, Gao L, Yu F, Wang F. Advances in electrochemiluminescence for single-cell analysis. Analyst 2022. [PMID: 36475529 DOI: 10.1039/d2an01159j] [Reference Citation Analysis]
34 Liu J, Zhang Y, Yuan R, Chai Y. Fluorine-nitrogen co-doped carbon dots with stable and strong electrochemiluminescence as an emitter for ultrasensitive detection of HIV-DNA fragment. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.133260] [Reference Citation Analysis]
35 Lyu J, Liang W, Lv J. A flow-drop electrochemiluminescent design for portable detection of soil and skin 2,4,6-trinitrotoluene. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108309] [Reference Citation Analysis]
36 Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. TrAC Trends in Analytical Chemistry 2022;157:116735. [DOI: 10.1016/j.trac.2022.116735] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
37 Soni GK, Saima, Manhas P, Sharma RK. Peptide-based optical biosensors: A promising approach for early-stage cancer detection. Biosensors and Bioelectronics: X 2022;12:100259. [DOI: 10.1016/j.biosx.2022.100259] [Reference Citation Analysis]
38 Lei M, Zhang Y, Hu Y, Dong Y, Zhang W. Synthesis of CuGa2O4/MoS2 nanocomposite and its electrogenerated chemiluminescent sensing application. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.117070] [Reference Citation Analysis]
39 Sobhanie E, Salehnia F, Xu G, Hamidipanah Y, Arshian S, Firoozbakhtian A, Hosseini M, Ganjali MR, Hanif S. Recent trends and advancements in electrochemiluminescence biosensors for human virus detection. Trends Analyt Chem 2022;157:116727. [PMID: 35815064 DOI: 10.1016/j.trac.2022.116727] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Dong J, Li G, Xia L. Microfluidic Magnetic Spatial Confinement Strategy for the Enrichment and Ultrasensitive Detection of MCF-7 and Escherichia coli O157:H7. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c04314] [Reference Citation Analysis]
41 Adsetts JR, Chu K, Hesari M, Whitworth Z, Qin X, Zhan Z, Ding Z. Absolute Electrochemiluminescence Quantum Efficiency of Au Nanoclusters by Means of a Spectroscopy Charge-Coupled Device Camera. J Phys Chem C 2022. [DOI: 10.1021/acs.jpcc.2c06881] [Reference Citation Analysis]
42 Weng Z, Li Z, Zhang Y, Zhang M, Huang Z, Chen W, Peng H. Gold Nanocluster Probe-Based Electron-Transfer-Mediated Electrochemiluminescence Sensing Strategy for an Ultrasensitive Copper Ion Detection. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c04012] [Reference Citation Analysis]
43 Han Z, Yu X, Wang C, Sang Y, Zhao Y, Du P, Lu X. Propeller-like structure-stabilized phosphole and its aromaticity-promoted electrochemiluminescence. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132977] [Reference Citation Analysis]
44 Xiong C, Huang J, Liu H, Chen M, Wen W, Zhang X, Wang S. Ruthenium(II) complex encapsulated multifunctional metal organic frameworks based electrochemiluminescence sensor for sensitive detection of hydrogen sulfide. Talanta 2022;249:123602. [DOI: 10.1016/j.talanta.2022.123602] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Zhang W, Han D, Wu Z, Yang K, Sun S, Wen J. Metal-organic layers-catalyzed amplification of electrochemiluminescence signal and its application for immunosensor construction. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.133004] [Reference Citation Analysis]
46 Zhang H, Du L, Wei Z, Wang X, Sojic N, Zhou X, Wang Z. Boosting the electrochemiluminescence of luminol-O2 system by high-intensity focused ultrasound. Anal Bioanal Chem 2022. [PMID: 36239751 DOI: 10.1007/s00216-022-04365-0] [Reference Citation Analysis]
47 Feng Y, Wang N, Ju H. Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1329-5] [Reference Citation Analysis]
48 Han J, Yu Y, Wang G, Gao X, Geng L, Sun J, Zhang M, Meng X, Li F, Shi C, Sun X, Guo Y, Ahmed MBM. Ultrasensitive electrochemiluminescence aptasensor based on ABEI reduced silver nanoparticles for the detection of profenofos. Science of The Total Environment 2022;844:157184. [DOI: 10.1016/j.scitotenv.2022.157184] [Reference Citation Analysis]
49 Hu S, Qin D, Meng S, Wu Y, Luo Z, Deng B. Cathodic electrochemiluminescence based on resonance energy transfer between sulfur quantum dots and dopamine quinone for the detection of dopamine. Microchemical Journal 2022;181:107776. [DOI: 10.1016/j.microc.2022.107776] [Reference Citation Analysis]
50 Yang E, Ning Z, Yin F, Fang Z, Chen M, Zhang M, Xu W, Zhang Y, Shen Y. Surface plasmon-enhanced electrochemiluminescence of P, N-doped carbon dots for ultrasensitive detection of BRAF gene. Sensors and Actuators B: Chemical 2022;369:132288. [DOI: 10.1016/j.snb.2022.132288] [Reference Citation Analysis]
51 Alemu YA, Rampazzo E, Paolucci F, Prodi L, Valenti G. Strategies of tailored nanomaterials for electrochemiluminescence signal enhancements. Current Opinion in Colloid & Interface Science 2022;61:101621. [DOI: 10.1016/j.cocis.2022.101621] [Reference Citation Analysis]
52 Dong J, Ding Y, Zhou Y. Synthesis and comparison study of electrochemiluminescence from mononuclear and corresponding heterodinuclear Ir-Ru complexes via an amide bond as a bridge. Dalton Trans 2022. [PMID: 36112029 DOI: 10.1039/d2dt02524h] [Reference Citation Analysis]
53 Pietsch M, Casado N, Mecerreyes D, Hernandez-sosa G. Inkjet-Printed Dual-Mode Electrochromic and Electroluminescent Displays Incorporating Ecofriendly Materials. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c12799] [Reference Citation Analysis]
54 Qin X, Yang L, Darshil P, Wang X, Kenneth C, Jonathan RA, Zhang C, Brian LP, Ding Z. Exploring effects of the π-conjugation length on silole electrochemiluminescent efficiencies. Sci Sin -Chim 2022;52:1737-1746. [DOI: 10.1360/ssc-2022-0097] [Reference Citation Analysis]
55 Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coordination Chemistry Reviews 2022;466:214611. [DOI: 10.1016/j.ccr.2022.214611] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
56 Yang L, Zhang R, Balónová B, True AE, Chu K, Adsetts JR, Zhang C, Qin X, Zysman-colman E, Blight BA, Ding Z. Insights into the electrochemiluminescence process of a hydrogen bonding iridium(III) complex. Journal of Electroanalytical Chemistry 2022;920:116594. [DOI: 10.1016/j.jelechem.2022.116594] [Reference Citation Analysis]
57 Zhou P, Hu S, Guo W, Su B. Deciphering electrochemiluminescence generation from luminol and hydrogen peroxide by imaging light emitting layer. Fundamental Research 2022;2:682-687. [DOI: 10.1016/j.fmre.2021.11.018] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Li J, Cai R, Tan W. A Novel ECL Sensing System for Ultrahigh Sensitivity miRNA-21 Detection Based on Catalytic Hairpin Assembly Cascade Nonmetallic SPR Effect. Anal Chem . [DOI: 10.1021/acs.analchem.2c03238] [Reference Citation Analysis]
59 Liu B, Yang X, Jabed M, Kilina S, Yang Z, Sun W. Water-soluble dinuclear iridium(III) and ruthenium(II) bis-terdentate complexes: photophysics and electrochemiluminescence. Dalton Trans 2022. [PMID: 36040117 DOI: 10.1039/d2dt02104h] [Reference Citation Analysis]
60 Song X, Zhao L, Ren X, Feng T, Ma H, Wu D, Li Y, Luo C, Wei Q. Highly Efficient PTCA/Co(3)O(4)/CuO/S(2)O(8)(2-) Ternary Electrochemiluminescence System Combined with a Portable Chip for Bioanalysis. ACS Sens 2022;7:2273-80. [PMID: 35919935 DOI: 10.1021/acssensors.2c00819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Mhanna R, Durand N, Savel P, Akdas-Kiliç H, Abdallah S, Versace DL, Soppera O, Fillaut JL, Sojic N, Malval JP. Micropatterning of electrochemiluminescent polymers based on multipolar Ru-complex two-photon initiators. Chem Commun (Camb) 2022;58:9678-81. [PMID: 35946997 DOI: 10.1039/d2cc04159f] [Reference Citation Analysis]
62 Han D, Goudeau B, Lapeyre V, Ravaine V, Jiang D, Fang D, Sojic N. Enhanced electrochemiluminescence at microgel-functionalized beads. Biosens Bioelectron 2022;216:114640. [PMID: 36030741 DOI: 10.1016/j.bios.2022.114640] [Reference Citation Analysis]
63 Ma H, Yi M, Messinger M, Wang G. Kinetics-Based Ratiometric Electrochemiluminescence Analysis for Signal Specificity: Case Studies of Piperazine Drug Discrimination with Au Nanoclusters. Anal Chem 2022. [PMID: 35973062 DOI: 10.1021/acs.analchem.2c01489] [Reference Citation Analysis]
64 Brown K, Oluwasanmi A, Hoskins C, Dennany L. Electrocatalytic enhancement of [Ru(bpy)3]2+ electrochemiluminescence for gemcitabine detection toward precision measurement via gold nanoparticle addition. Bioelectrochemistry 2022;146:108164. [DOI: 10.1016/j.bioelechem.2022.108164] [Reference Citation Analysis]
65 Du X, Sun J, Li Y, Du W, Jiang D. Self-accelerated electrochemiluminescence luminophor of Ag3PO4-Ti3C2 for trace lincomycin aptasensing. Microchemical Journal 2022;179:107578. [DOI: 10.1016/j.microc.2022.107578] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Nikolaou P, Sciuto EL, Zanut A, Petralia S, Valenti G, Paolucci F, Prodi L, Conoci S. Ultrasensitive PCR-Free detection of whole virus genome by electrochemiluminescence. Biosensors and Bioelectronics 2022;209:114165. [DOI: 10.1016/j.bios.2022.114165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
67 Ding H, Su B, Jiang D. Recent Advances in Single Cell Analysis by Electrochemiluminescence. ChemistryOpen 2022;:e202200113. [PMID: 35880657 DOI: 10.1002/open.202200113] [Reference Citation Analysis]
68 Li H, Zhou H, Zhang T, Zhang Z, Zhao G, Wang C. Electrocatalytic Generation of Cathodic Luminol Electrochemiluminescence with Carbonized Polydopamine Nanotubes at a Low Positive Potential. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c03116] [Reference Citation Analysis]
69 Zhao G, Dong X, Du Y, Zhang N, Bai G, Wu D, Ma H, Wang Y, Cao W, Wei Q. Enhancing Electrochemiluminescence Efficiency through Introducing Atomically Dispersed Ruthenium in Nickel-Based Metal-Organic Frameworks. Anal Chem 2022. [PMID: 35839514 DOI: 10.1021/acs.analchem.2c02334] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
70 Wang Y, Kan X. RuSiO 2 @Ag Core–Shell Nanoparticles for Plasmon Resonance Energy Transfer-Based Electrochemiluminescence Sensing of Glucose and Adenosine Triphosphate. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02415] [Reference Citation Analysis]
71 Gao N, Zeng H, Wang X, Zhang Y, Zhang S, Cui R, Zhang M, Mao L. Graphdiyne: A New Carbon Allotrope for Electrochemiluminescence. Angew Chem Int Ed Engl 2022;61:e202204485. [PMID: 35488432 DOI: 10.1002/anie.202204485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
72 Li F, Xi Y, Jiang J, Peng H, Li B, He J, Shu J, Cui H. O-Fluorobenzoic Acid-Mediated Construction of Porous Graphitic Carbon Nitride with Nitrogen Defects for Multicolor Electrochemiluminescence Imaging Sensing. Anal Chem 2022;94:9306-15. [PMID: 35738019 DOI: 10.1021/acs.analchem.2c00702] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Zhang H, Zhuang T, Wang L, Du L, Xia J, Wang Z. Efficient Au Nanocluster@Ti3C2 Heterostructure Luminophore Combined With Cas12a for Electrochemiluminescence Detection of miRNA. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132428] [Reference Citation Analysis]
74 Gu W, Wang X, Xi M, Wei X, Jiao L, Qin Y, Huang J, Cui X, Zheng L, Hu L, Zhu C. Single-Atom Iron Enables Strong Low-Triggering-Potential Luminol Cathodic Electrochemiluminescence. Anal Chem 2022. [PMID: 35734950 DOI: 10.1021/acs.analchem.2c01794] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Zhao Y, Descamps J, Le Corre B, Léger Y, Kuhn A, Sojic N, Loget G. Wireless Anti-Stokes Photoinduced Electrochemiluminescence at Closed Semiconducting Bipolar Electrodes. J Phys Chem Lett 2022;13:5538-44. [PMID: 35695813 DOI: 10.1021/acs.jpclett.2c01512] [Reference Citation Analysis]
76 Zuo J, Shen Y, Gao J, Song H, Ye Z, Liang Y, Zhang S. Highly sensitive determination of paracetamol, uric acid, dopamine, and catechol based on flexible plastic electrochemical sensors. Anal Bioanal Chem 2022. [PMID: 35723722 DOI: 10.1007/s00216-022-04157-6] [Reference Citation Analysis]
77 Cao Y, Zhou JL, Ma Y, Zhou Y, Zhu JJ. Recent progress of metal nanoclusters in electrochemiluminescence. Dalton Trans 2022;51:8927-37. [PMID: 35593102 DOI: 10.1039/d2dt00810f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Descamps J, Zhao Y, Yu J, Xu G, Léger Y, Loget G, Sojic N. Anti-Stokes photoinduced electrochemiluminescence at a photocathode. Chem Commun (Camb) 2022;58:6686-8. [PMID: 35621023 DOI: 10.1039/d2cc01804g] [Reference Citation Analysis]
79 Chen S, Lei Y, Xu J, Yang Y, Dong Y, Li Y, Yi H, Liao Y, Chen L, Xiao Y. Simple, rapid, and visual electrochemiluminescence sensor for on-site catechol analysis. RSC Adv 2022;12:17330-6. [PMID: 35765423 DOI: 10.1039/d2ra03067e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors (Basel) 2022;12:386. [PMID: 35735534 DOI: 10.3390/bios12060386] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Lv X, Li Y, Cui B, Fang Y, Wang L. Electrochemiluminescent sensor based on an aggregation-induced emission probe for bioanalytical detection. Analyst 2022;147:2338-54. [PMID: 35510524 DOI: 10.1039/d2an00349j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Bezuneh TT, Fereja TH, Kitte SA, Li H, Jin Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022;248:123611. [PMID: 35660995 DOI: 10.1016/j.talanta.2022.123611] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Wang C, Hu F, Zou X, Wang Y, Ren Y, Tan J. Lanthanide Ce(III)/Tb(III) bimetallic coordination polymer as an advanced electrochemiluminescence emitter for epinephrine sensing application. Talanta 2022;248:123621. [PMID: 35661844 DOI: 10.1016/j.talanta.2022.123621] [Reference Citation Analysis]
84 Lei Z, Lei P, Guo J, Wang Z. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins. Talanta 2022;248:123607. [PMID: 35661001 DOI: 10.1016/j.talanta.2022.123607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Zhao Y, Descamps J, Ababou-Girard S, Bergamini JF, Santinacci L, Léger Y, Sojic N, Loget G. Metal-Insulator-Semiconductor Anodes for Ultrastable and Site-Selective Upconversion Photoinduced Electrochemiluminescence. Angew Chem Int Ed Engl 2022;61:e202201865. [PMID: 35233901 DOI: 10.1002/anie.202201865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Ma H, Wang G. Electrochemiluminescence in Single Entities, Microscopic Imaging and Ratiometric Analysis. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.101036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Huang X, Li H, Hu M, Bai M, Guo Y, Sun X. Effective Electrochemiluminescence Aptasensor for Detection of Atrazine Residue. Sensors 2022;22:3430. [DOI: 10.3390/s22093430] [Reference Citation Analysis]
88 Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-hamry A, Kanoun O, Pašti I, Lazarevic-pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2022.2063683] [Reference Citation Analysis]
89 Wei X, Luo X, Xu S, Xi F, Zhao T. A Flexible Electrochemiluminescence Sensor Equipped With Vertically Ordered Mesoporous Silica Nanochannel Film for Sensitive Detection of Clindamycin. Front Chem 2022;10:872582. [DOI: 10.3389/fchem.2022.872582] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
90 Wu L, Zhou T, Huang R. A universal CRISPR/Cas9-based electrochemiluminescence probe for sensitive and single-base-specific DNA detection. Sensors and Actuators B: Chemical 2022;357:131411. [DOI: 10.1016/j.snb.2022.131411] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Liu X, Zhao S, Tan L, Tan Y, Wang Y, Ye Z, Hou C, Xu Y, Liu S, Wang G. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosensors and Bioelectronics 2022;201:113932. [DOI: 10.1016/j.bios.2021.113932] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
92 Li J, Shen J, Qi R. Electrochemiluminescence sensing platform for microorganism detection. Biosaf Health 2022;4:61-3. [PMID: 35287303 DOI: 10.1016/j.bsheal.2022.02.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems – A review. Journal of Environmental Management 2022;308:114655. [DOI: 10.1016/j.jenvman.2022.114655] [Reference Citation Analysis]
94 Wang Z, Guo H, Luo Z, Duan Y, Feng Y. Low-Triggering-Potential Electrochemiluminescence from a Luminol Analogue Functionalized Semiconducting Polymer Dots for Imaging Detection of Blood Glucose. Anal Chem 2022. [PMID: 35352933 DOI: 10.1021/acs.analchem.1c05377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
95 Brown K, Dennany L. Electrochemiluminescence sensors and forensic investigations: a viable technique for drug detection? Pure and Applied Chemistry 2022;0. [DOI: 10.1515/pac-2021-1204] [Reference Citation Analysis]
96 Hua Y, Kukkar D, Brown RJC, Kim K. Recent advances in the synthesis of and sensing applications for metal-organic framework-molecularly imprinted polymer (MOF-MIP) composites. Critical Reviews in Environmental Science and Technology. [DOI: 10.1080/10643389.2022.2050161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
97 Wang X, Liu H, Jiang J, Qian M, Qi H, Gao Q, Zhang C. Highly Efficient Aggregation-Induced Enhanced Electrochemiluminescence of Cyanophenyl-Functionalized Tetraphenylethene and Its Application in Biothiols Analysis. Anal Chem 2022. [PMID: 35311260 DOI: 10.1021/acs.analchem.2c00631] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
98 Kim KR, Oh J, Hong JI. Highly Selective Electrochemiluminescence Chemosensor for Sulfide Enabled by Hierarchical Reactivity. Anal Chem 2022. [PMID: 35302353 DOI: 10.1021/acs.analchem.1c05317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Zhao Y, Descamps J, Ababou‐girard S, Bergamini J, Santinacci L, Léger Y, Sojic N, Loget G. Metal‐Insulator‐Semiconductor Anodes for Ultrastable and Site‐Selective Upconversion Photoinduced Electrochemiluminescence. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202201865] [Reference Citation Analysis]
100 Ma K, Zheng Y, An L, Liu J. Ultrasensitive Immunosensor for Prostate-Specific Antigen Based on Enhanced Electrochemiluminescence by Vertically Ordered Mesoporous Silica-Nanochannel Film. Front Chem 2022;10:851178. [DOI: 10.3389/fchem.2022.851178] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
101 Liu F, Du F, Yuan F, Quan S, Guan Y, Xu G. Electrochemiluminescence bioassays based on carbon nitride nanomaterials and 2D transition metal carbides. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.100981] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
102 Han D, Li X, Bian X, Wang J, Kong L, Ding S, Yan Y. Localized surface plasmon-enhanced electrochemiluminescence biosensor for rapid, label-free, and single-step detection of broad-spectrum bacteria using urchin-like Au and Ag nanoparticles. Sensors and Actuators B: Chemical 2022;355:131120. [DOI: 10.1016/j.snb.2021.131120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Ma X, Kang Q, Li M, Fu L, Zou G, Shen D. Sensitive, Signal-Modulation Strategy for Discrimination of ECL Spectra and Investigation of Mutual Interactions of Emitters. Anal Chem . [DOI: 10.1021/acs.analchem.1c05217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
104 Zheng Y, Yang H, Zhao L, Bai Y, Chen X, Wu K, Liu S, Shen Y, Zhang Y. Lighting Up Electrochemiluminescence-Inactive Dyes via Grafting Enabled by Intramolecular Resonance Energy Transfer. Anal Chem 2022. [PMID: 35143169 DOI: 10.1021/acs.analchem.1c05235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Kitte SA, Bushira FA, Soreta TR. A New Anodic Electrochemiluminescence of Tris(2,2′- bipyridine)ruthenium(II) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a Coreactant for Determination of Hydrogen peroxide. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Saqib M, Bashir S, Ali S, Hao R. Highly selective and sensitive detection of mercury (II) and dopamine based on the efficient electrochemiluminescence of Ru(bpy)32+ with acridine orange as a coreactant. Journal of Electroanalytical Chemistry 2022;906:115896. [DOI: 10.1016/j.jelechem.2021.115896] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
107 Duan Y, Song Y, Fan N, Yao Y, Deng S, Ding S, Shen B, Yin Q. Self-enhanced luminol-based electrochemiluminescent hydrogels: An ultrasensitive biosensing platform for fusion gene analysis coupled with target-initiated DNAzyme motor. Biosens Bioelectron 2022;197:113784. [PMID: 34801798 DOI: 10.1016/j.bios.2021.113784] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
108 Liu S, Xiang K, Wang C, Zhang Y, Fan GC, Wang W, Han H. DNA Nanotweezers for Biosensing Applications: Recent Advances and Future Prospects. ACS Sens 2022;7:3-20. [PMID: 34989231 DOI: 10.1021/acssensors.1c01647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
109 Huang Z, Yu S, Jian M, Weng Z, Deng H, Peng H, Chen W. Ultrasensitive Glutathione-Mediated Facile Split-Type Electrochemiluminescence Nanoswitch Sensing Platform. Anal Chem 2022. [PMID: 35049295 DOI: 10.1021/acs.analchem.1c05198] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
110 Chen J, Zhao Y, Wan Y, Zhu L, Li B, Wu J, Li L, Huang Y, Li Y, Long X, Deng S. Electrochemiluminescent Ion-Channeling Framework for Membrane Binding and Transmembrane Activity Assays. Anal Chem 2022. [PMID: 35041791 DOI: 10.1021/acs.analchem.1c04593] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022;27:508. [PMID: 35056823 DOI: 10.3390/molecules27020508] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
112 Jiang Y, Li Q, Xu Y, Bai W, Yang X, Li S, Li Y. Electrochemiluminescent emission potential tunable Cu-Zn-In-S/ZnS nanocrystals for multiplex microRNAs potential-resolved detection. Biosens Bioelectron 2022;201:113980. [PMID: 35032846 DOI: 10.1016/j.bios.2022.113980] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
113 Xiao Y, Wang G, Yi H, Chen S, Wu Q, Zhang S, Deng K, Zhang S, Shi Z, Yang X. Electrogenerated chemiluminescence of a Ru(bpy) 32+ /arginine system: a specific and sensitive detection of acetaminophen. RSC Adv 2022;12:3157-64. [DOI: 10.1039/d1ra09371a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Fan Z, Yao B, Ding Y, Xu D, Zhao J, Zhang K. Rational engineering the DNA tetrahedrons of dual wavelength ratiometric electrochemiluminescence biosensor for high efficient detection of SARS-CoV-2 RdRp gene by using entropy-driven and bipedal DNA walker amplification strategy. Chem Eng J 2022;427:131686. [PMID: 34400874 DOI: 10.1016/j.cej.2021.131686] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 24.0] [Reference Citation Analysis]
115 Luo Y, Xiang W, Zhang X, Hu L, Dong Y. Electrogenerated chemiluminescence sensor for silver ions based on their coordination interaction with cucurbit[6]uril. New J Chem 2022;46:5026-33. [DOI: 10.1039/d1nj05878a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Jiang X, Wang H, Shen Y, Hu N, Shi W. Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection. Sensors and Actuators B: Chemical 2022;350:130891. [DOI: 10.1016/j.snb.2021.130891] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
117 Wang X, Che Z, Bao N, Qing Z, Ding S. Recent advances in II-VI quantum dots based-signal strategy of electrochemiluminescence sensor. Talanta Open 2022. [DOI: 10.1016/j.talo.2022.100088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
118 Zhang Z, Ma C, Xu Q, Zhu J. Recent progress in electrochemiluminescence microscopy analysis of single cells. Analyst 2022;147:2884-2894. [DOI: 10.1039/d2an00709f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Shan X, Song Q, Su C, Dong C, Jiang D, Wang W, Chen Z. Simply amplificated signal in electrochemiluminescence sensor using nano-gold film as a bridge. Microchemical Journal 2022;172:106887. [DOI: 10.1016/j.microc.2021.106887] [Reference Citation Analysis]
120 Liang X, Zhang W, Zhang M, Qiu G, Zhang Y, Luo T, Kong C. Facile synthesis of nitrogen-doped graphene quantum dots as nanocarbon emitters for sensitive detection of catechol. RSC Adv 2022;12:25778-85. [DOI: 10.1039/d2ra04209f] [Reference Citation Analysis]
121 Wang L, Wu Q, Yu R, Zhang H, Nie F, Zhang W. Enhancing K 2 S 2 O 8 electrochemiluminescence based on silver nanoparticles and zinc metal–organic framework composite (AgNPs@ZnMOF) for the determination of l -cysteine. RSC Adv 2022;12:23437-46. [DOI: 10.1039/d2ra04033f] [Reference Citation Analysis]
122 Zhou P, Su B. Enhanced electrochemiluminescence at silica nanochannel membrane studied by scanning electrochemical microscopy. Journal of Electroanalytical Chemistry 2022;904:115943. [DOI: 10.1016/j.jelechem.2021.115943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
123 Ma H, Brown W, Chen S, Ake SA, Wang G. Kinetics of the Near Infrared Electrochemiluminescence from Metal Nanoclusters on Surface and in Solution. J Electrochem Soc 2021;168:126528. [DOI: 10.1149/1945-7111/ac4457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
124 Liang Z, Zhao J, Wang P, Nie Y, Xu S, Ma Q. Gold Nanorod Vertical Array-Based Electrochemiluminescence Polarization Assay for Triple-Negative Breast Cancer Detection. Anal Chem 2021. [PMID: 34965090 DOI: 10.1021/acs.analchem.1c04413] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
125 Wang Z, Zhou X, Huang Z, Han J, Xie G, Liu J. A sensor array based on DNA-wrapped bimetallic zeolitic imidazolate frameworks for detection of ATP hydrolysis products. Nanoscale 2021;14:26-34. [PMID: 34897352 DOI: 10.1039/d1nr05982c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
126 Cao JT, Fu YZ, Fu XL, Ren SW, Liu YM. Dual-wavelength electrochemiluminescence ratiometry for hydrogen sulfide detection based on Cd2+-doped g-C3N4 nanosheets. Analyst 2021. [PMID: 34931211 DOI: 10.1039/d1an01873f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
127 Rebeccani S, Zanut A, Santo CI, Valenti G, Paolucci F. A Guide Inside Electrochemiluminescent Microscopy Mechanisms for Analytical Performance Improvement. Anal Chem 2021. [PMID: 34908412 DOI: 10.1021/acs.analchem.1c05065] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
128 Feng M, Dauphin AL, Bouffier L, Zhang F, Wang Z, Sojic N. Enhanced Cathodic Electrochemiluminescence of Luminol on Iron Electrodes. Anal Chem 2021;93:16425-31. [PMID: 34843226 DOI: 10.1021/acs.analchem.1c03139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
129 Kitte SA, Bushira FA, Li H, Jin Y. Surface Bonding Enhanced Self-Co-Reactant Electrogenerated Chemiluminescence for Sensitive and Selective Detection of Thioglycolic Acid in Cosmetics. Chemistry 2021. [PMID: 34904284 DOI: 10.1002/chem.202103724] [Reference Citation Analysis]
130 Gong J, Tang H, Luo X, Zhou H, Lin X, Wang K, Yan F, Xi F, Liu J. Vertically Ordered Mesoporous Silica-Nanochannel Film-Equipped Three-Dimensional Macroporous Graphene as Sensitive Electrochemiluminescence Platform. Front Chem 2021;9:770512. [PMID: 34881226 DOI: 10.3389/fchem.2021.770512] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
131 Nasrollahpour H, Khalilzadeh B, Naseri A, Sillanpää M, Chia CH. Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments? Anal Chem 2021. [PMID: 34878242 DOI: 10.1021/acs.analchem.1c03909] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
132 Wang Y, Kan X. Sensitive and selective "signal-off" electrochemiluminescence sensing of prostate-specific antigen based on an aptamer and molecularly imprinted polymer. Analyst 2021;146:7693-701. [PMID: 34812806 DOI: 10.1039/d1an01645h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
133 Shang L, Zhao XH, Zhang W, Jia LP, Ma RN, Xue QW, Wang HS, Guo AX, Si L. Graphene-PtPd nanocomposite for low-potential-driven electrochemiluminescent determination of carcinoembryonic antigen using Ru(bpy)32. Mikrochim Acta 2021;189:17. [PMID: 34873664 DOI: 10.1007/s00604-021-05120-5] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
134 Cánovas R, Daems E, Campos R, Schellinck S, Madder A, Martins JC, Sobott F, De Wael K. Novel electrochemiluminescent assay for the aptamer-based detection of testosterone. Talanta 2021;239:123121. [PMID: 34942485 DOI: 10.1016/j.talanta.2021.123121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Saqib M, Fan Y, Hao R, Zhang B. Optical imaging of nanoscale electrochemical interfaces in energy applications. Nano Energy 2021;90:106539. [DOI: 10.1016/j.nanoen.2021.106539] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
136 Zhao Y, Yu J, Bergamini J, Léger Y, Sojic N, Loget G. Photoelectrochemistry at semiconductor/liquid interfaces triggered by electrochemiluminescence. Cell Reports Physical Science 2021;2:100670. [DOI: 10.1016/j.xcrp.2021.100670] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
137 Qin X, Jin HJ, Li X, Li J, Pan JB, Wang K, Liu S, Xu JJ, Xia XH. Label-Free Electrochemiluminescence Imaging of Single-Cell Adhesions by Using Bipolar Nanoelectrode Array. Chemistry 2021;:e202103964. [PMID: 34850460 DOI: 10.1002/chem.202103964] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
138 Yue Y, Xiang W, Yuan Y, Dong Y, Yue C. Electrochemiluminescence of Ru(bpy) 32+ in 1-ethyl-3-methylimidazolium Tetrafluoroborate Salt and Its Application in the Fabrication of Biosensor for Thrombin. J Electrochem Soc 2021;168:116509. [DOI: 10.1149/1945-7111/ac377b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
139 Zhu L, Lv X, Li Z, Shi H, Zhang Y, Zhang L, Yu J. All-sealed paper-based electrochemiluminescence platform for on-site determination of lead ions. Biosens Bioelectron 2021;192:113524. [PMID: 34325321 DOI: 10.1016/j.bios.2021.113524] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
140 Tang Y, Zhai J, Chen Q, Xie X. Ruthenium bipyridine complexes as electrochemiluminescent transducers for ionophore-based ion-selective detection. Analyst 2021;146:6955-9. [PMID: 34661221 DOI: 10.1039/d1an01355f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Brown K, Dennany L. Assessment of [Ru(bpy)2]3+and [Os(diars)2(bthp)]2+ for the electrochemiluminescence detection of gemcitabine and leucovorin toward diagnostic point-of-care sensors within precision medicine. Sensors and Actuators Reports 2021;3:100065. [DOI: 10.1016/j.snr.2021.100065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
142 Zhang G, Han Q, Song L, Liu P, Kuang G, Fu Y. Oxidized plant leaf-derived carbon dots as novel electrochemiluminescent luminophores for ultrasensitive microRNA-21 detection. Sensors and Actuators B: Chemical 2021;346:130529. [DOI: 10.1016/j.snb.2021.130529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
143 Wang Y, Su B. Deciphering the Mechanisms of Electrochemiluminescence by Spatially Resolved Measurements. Analysis & Sensing 2021;1:148-155. [DOI: 10.1002/anse.202100037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
144 Liu C, Qie Y, Zhao L, Li M, Guo LH. A High-Throughput Platform for the Rapid Quantification of Phosphorylated Histone H2AX in Cell Lysates Based on Microplate Electrochemiluminescence Immunosensor Array. ACS Sens 2021;6:3724-32. [PMID: 34591450 DOI: 10.1021/acssensors.1c01502] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
145 Tian JK, Zhao ML, Song YM, Zhong X, Yuan R, Zhuo Y. MicroRNA-Triggered Deconstruction of Field-Free Spherical Nucleic Acid as an Electrochemiluminescence Biosensing Switch. Anal Chem 2021;93:13928-34. [PMID: 34609848 DOI: 10.1021/acs.analchem.1c02965] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
146 Chu K, Adsetts JR, Ma J, Zhang C, Hesari M, Yang L, Ding Z. Physical Strategy to Determine Absolute Electrochemiluminescence Quantum Efficiencies of Coreactant Systems Using a Photon-Counting Photomultiplier Device. J Phys Chem C 2021;125:22274-82. [DOI: 10.1021/acs.jpcc.1c06342] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
147 Gao P, Wei R, Chen Y, Liu X, Zhang J, Pan W, Li N, Tang B. Multicolor Covalent Organic Framework-DNA Nanoprobe for Fluorescence Imaging of Biomarkers with Different Locations in Living Cells. Anal Chem 2021;93:13734-41. [PMID: 34605236 DOI: 10.1021/acs.analchem.1c03545] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
148 Li R, Wen Y, Wang F, He P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J Anim Sci Biotechnol 2021;12:108. [PMID: 34629116 DOI: 10.1186/s40104-021-00629-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
149 Yin H, Lei M, Liu H, Dong Y. Dual-potential electrochemiluminescence from black phosphorus and graphitic carbon nitrides for label-free enzymatic biosensing. Analyst 2021;146:6281-7. [PMID: 34549731 DOI: 10.1039/d1an01366a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
150 Hu L, Lei M, Zhang J, Dong Y. An “off-on-off” mode ECL sensor for drug detection based on the host-guest interaction of cucurbit[7]uril. Sensors and Actuators B: Chemical 2021;344:130328. [DOI: 10.1016/j.snb.2021.130328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
151 Zhuang T, Zhang H, Wang L, Yu L, Wang Z. Anchoring luminol based on Ti3C2-mediated in situ formation of Au NPs for construction of an efficient probe for miRNA electrogenerated chemiluminescence detection. Anal Bioanal Chem 2021;413:6963-71. [PMID: 34581826 DOI: 10.1007/s00216-021-03651-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
152 Sun Y, Huang C, Sun X, Wang Q, Zhao P, Ge S, Yu J. Electrochemiluminescence biosensor based on molybdenum disulfide-graphene quantum dots nanocomposites and DNA walker signal amplification for DNA detection. Mikrochim Acta 2021;188:353. [PMID: 34568991 DOI: 10.1007/s00604-021-04962-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Rebeccani S, Wetzl C, Zamolo VA, Criado A, Valenti G, Paolucci F, Prato M. Electrochemiluminescent immunoassay enhancement driven by carbon nanotubes. Chem Commun (Camb) 2021;57:9672-5. [PMID: 34555139 DOI: 10.1039/d1cc03457j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
154 Li CY, Zheng B, Lu LL, Fang WK, Zheng MQ, Gao JL, Yuheng L, Pang DW, Tang HW. Biomimetic Chip Enhanced Time-Gated Luminescent CRISPR-Cas12a Biosensors under Functional DNA Regulation. Anal Chem 2021;93:12514-23. [PMID: 34490773 DOI: 10.1021/acs.analchem.1c01403] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
155 Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021;23:19120-9. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
156 Liu G, Wang PL, Gao H. Visualization analysis of lecithin in drugs based on electrochemiluminescent single gold microbeads. J Pharm Anal 2021;11:515-22. [PMID: 34513128 DOI: 10.1016/j.jpha.2021.02.002] [Reference Citation Analysis]
157 Dong S, Yan J, Zhou S, Zhou Q. Mycotoxins Detection Based on Electrochemical Approaches. Electroanalysis 2022;34:132-47. [DOI: 10.1002/elan.202100349] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
158 Xu C, Li J, Kitte SA, Qi G, Li H, Jin Y. Light Scattering and Luminophore Enrichment-Enhanced Electrochemiluminescence by a 2D Porous Ru@SiO2 Nanoparticle Membrane and Its Application in Ultrasensitive Detection of Prostate-Specific Antigen. Anal Chem 2021;93:11641-7. [PMID: 34378929 DOI: 10.1021/acs.analchem.1c02708] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
159 Zhang M, Shi L, Liu X, Qian M, Qi H. “Signal‐on” Electrogenerated Chemiluminescence Biosensing Method for the Determination of Matrix Metalloproteinase 2. Electroanalysis. [DOI: 10.1002/elan.202100284] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
160 Yang L, Du Y, Fan D, Zhang Y, Kuang X, Sun X, Wei Q. Facile Encapsulation of Iridium(III) Complexes in Apoferritin Nanocages as Promising Electrochemiluminescence Nanodots for Immunoassays. Anal Chem 2021;93:11329-36. [PMID: 34342421 DOI: 10.1021/acs.analchem.1c02675] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
161 Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021;60:18742-9. [PMID: 34115447 DOI: 10.1002/anie.202105867] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
162 Zhou J, Zhang S, Liu Y. Electrochemiluminescence Single‐cell Analysis on Nanostructured Interface. Electroanalysis. [DOI: 10.1002/elan.202100341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
163 Zhao X, Shang L, Zhang W, Jia L, Ma R, Wang H. Sensitive detection of carcinoembryonic antigen based on a low-potential-triggered electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II) with oxalate as coreactant. Journal of Electroanalytical Chemistry 2021;895:115392. [DOI: 10.1016/j.jelechem.2021.115392] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
164 Du F, Chen Y, Meng C, Lou B, Zhang W, Xu G. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy. Current Opinion in Electrochemistry 2021;28:100725. [DOI: 10.1016/j.coelec.2021.100725] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
165 Ma M, Lu J, Wang L, Qiu X, Xu T, Wang S, Zhu Y. Electrochemiluminescence behavior of 2-Hydroxynicotinic acid and identification of phloxine B by electrochemiluminescence resonance energy transfer. Journal of Electroanalytical Chemistry 2021;895:115544. [DOI: 10.1016/j.jelechem.2021.115544] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
166 Gabler T, Krześniak A, Janik M, Myśliwiec A, Koba M, Buczyńska J, Jönsson-Niedziółka M, Smietana M. Electrochemistry in an optical fiber microcavity - optical monitoring of electrochemical processes in picoliter volumes. Lab Chip 2021;21:2763-70. [PMID: 34047326 DOI: 10.1039/d1lc00324k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
167 Ma X, Gao W, Du F, Yuan F, Yu J, Guan Y, Sojic N, Xu G. Rational Design of Electrochemiluminescent Devices. Acc Chem Res 2021;54:2936-45. [PMID: 34165296 DOI: 10.1021/acs.accounts.1c00230] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 17.5] [Reference Citation Analysis]
168 Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem 2021;133:18890-7. [DOI: 10.1002/ange.202105867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
169 Li L, Zhou Z, Li X, Li D, Zhao M, Liu C, Wu H, Yang W, Ding S, Shen B. An "off-on" electrochemiluminescence biosensor coupled with strand displacement-powered 3D micromolecule walking nanomachine for ultrasensitive detection of adenosine triphosphate. Mikrochim Acta 2021;188:237. [PMID: 34184148 DOI: 10.1007/s00604-021-04895-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
170 Asbaghian-Namin H, Karami P, Naghshara H, Gholamin D, Johari-Ahar M. Electrochemiluminescent immunoassay for the determination of CA15-3 and CA72-4 using graphene oxide nanocomposite modified with CdSe quantum dots and Ru(bpy)3 complex. Mikrochim Acta 2021;188:238. [PMID: 34184115 DOI: 10.1007/s00604-021-04890-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
171 Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021;191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
172 Douman SF, De Eguilaz MR, Cumba LR, Beirne S, Wallace GG, Yue Z, Iwuoha EI, Forster RJ. Electrochemiluminescence at 3D Printed Titanium Electrodes. Front Chem 2021;9:662810. [PMID: 34113601 DOI: 10.3389/fchem.2021.662810] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
173 Yanyan Z, Lin J, Xie L, Tang H, Wang K, Liu J. One-Step Preparation of Nitrogen-Doped Graphene Quantum Dots With Anodic Electrochemiluminescence for Sensitive Detection of Hydrogen Peroxide and Glucose. Front Chem 2021;9:688358. [PMID: 34150720 DOI: 10.3389/fchem.2021.688358] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
174 Hiramoto K, Ino K, Komatsu K, Nashimoto Y, Shiku H. Electrochemiluminescence imaging of respiratory activity of cellular spheroids using sequential potential steps. Biosens Bioelectron 2021;181:113123. [PMID: 33714859 DOI: 10.1016/j.bios.2021.113123] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
175 Yu J, Saada H, Sojic N, Loget G. Photoinduced electrochemiluminescence at nanostructured hematite electrodes. Electrochimica Acta 2021;381:138238. [DOI: 10.1016/j.electacta.2021.138238] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
176 Zeng Z, Huang P, Kong Y, Tong L, Zhang B, Luo Y, Chen L, Zhang Y, Han D, Niu L. Nanoencapsulation strategy: enabling electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters in aqueous media. Chem Commun (Camb) 2021;57:5262-5. [PMID: 34008623 DOI: 10.1039/d1cc01705e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
177 Chen Y, Gou X, Ma C, Jiang D, Zhu JJ. A Synergistic Coreactant for Single-Cell Electrochemiluminescence Imaging: Guanine-Rich ssDNA-Loaded High-Index Faceted Gold Nanoflowers. Anal Chem 2021;93:7682-9. [PMID: 34011149 DOI: 10.1021/acs.analchem.1c00602] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
178 Ding H, Zhou P, Fu W, Ding L, Guo W, Su B. Spatially Selective Imaging of Cell-Matrix and Cell-Cell Junctions by Electrochemiluminescence. Angew Chem Int Ed Engl 2021;60:11769-73. [PMID: 33709454 DOI: 10.1002/anie.202101467] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 20.0] [Reference Citation Analysis]
179 Towaranonte B, Gao Y. Application of Charge-Coupled Device (CCD) Cameras in Electrochemiluminescence: A Minireview. Analytical Letters 2022;55:186-202. [DOI: 10.1080/00032719.2021.1920971] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
180 Wei W, Lin H, Hao T, Wang S, Hu Y, Guo Z, Luo X. DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosens Bioelectron 2021;186:113305. [PMID: 33990037 DOI: 10.1016/j.bios.2021.113305] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
181 Zhang N, Gao H, Jia YL, Pan JB, Luo XL, Chen HY, Xu JJ. Ultrasensitive Nucleic Acid Assay Based on AIE-Active Polymer Dots with Excellent Electrochemiluminescence Stability. Anal Chem 2021;93:6857-64. [PMID: 33890762 DOI: 10.1021/acs.analchem.1c00947] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
182 Li S, Li J, Geng B, Yang X, Song Z, Li Z, Ding B, Zhang J, Lin W, Yan M. TPE based electrochemiluminescence for ALP selective rapid one-step detection applied in vitro. Microchemical Journal 2021;164:106041. [DOI: 10.1016/j.microc.2021.106041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
183 Du D, Wei X, Huang J, Tu Y. Real-time monitoring of ROS secreted by Ana-1 mouse Macrophages by nanomaterial sensitized Electrochemiluminescence. Journal of Electroanalytical Chemistry 2021;889:115230. [DOI: 10.1016/j.jelechem.2021.115230] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
184 Huang P, Zhang B, Hu Q, Zhao B, Zhu Y, Zhang Y, Kong Y, Zeng Z, Bao Y, Wang W, Cheng Y, Niu L. Polymer Electrochemiluminescence Featuring Thermally Activated Delayed Fluorescence. Chemphyschem 2021;22:726-32. [PMID: 33624418 DOI: 10.1002/cphc.202100076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
185 Ding H, Zhou P, Fu W, Ding L, Guo W, Su B. Spatially Selective Imaging of Cell–Matrix and Cell–Cell Junctions by Electrochemiluminescence. Angew Chem 2021;133:11875-9. [DOI: 10.1002/ange.202101467] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
186 Xiao Y, Chen S, Zhang S, Wang G, Yi H, Xin GZ, Yang X. Mesoporous silica-mediated controllable electrochemiluminescence quenching for immunosensor with simplicity, sensitivity and tunable detection range. Talanta 2021;231:122399. [PMID: 33965049 DOI: 10.1016/j.talanta.2021.122399] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
187 Cao Y, Zhu JJ. Recent Progress in Electrochemiluminescence of Halide Perovskites. Front Chem 2021;9:629830. [PMID: 33816436 DOI: 10.3389/fchem.2021.629830] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
188 Fang J, Li J, Feng R, Yang L, Zhao L, Zhang N, Zhao G, Yue Q, Wei Q, Cao W. Dual-quenching electrochemiluminescence system based on novel acceptor CoOOH@Au NPs for early detection of procalcitonin. Sensors and Actuators B: Chemical 2021;332:129544. [DOI: 10.1016/j.snb.2021.129544] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
189 Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence detection of single entities. Chem Sci 2021;12:5720-36. [PMID: 34168801 DOI: 10.1039/d0sc07085h] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 18.0] [Reference Citation Analysis]
190 Hesari M, Ding Z. Spooling electrochemiluminescence spectroscopy: development, applications and beyond. Nat Protoc 2021;16:2109-30. [PMID: 33731962 DOI: 10.1038/s41596-020-00486-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
191 Wang H. Advances in electrochemiluminescence co-reaction accelerator and its analytical applications. Anal Bioanal Chem 2021;413:4119-35. [PMID: 33715042 DOI: 10.1007/s00216-021-03247-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
192 Cheng R, Ding Y, Wang Y, Wang H, Zhang Y, Wei Q. A novel molecularly imprinted electrochemiluminescence sensor based on cobalt nitride nanoarray electrode for the sensitive detection of bisphenol S. RSC Adv 2021;11:11011-9. [PMID: 35423555 DOI: 10.1039/d0ra10676c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
193 Huang Z, Li Z, Chen Y, Xu L, Xie Q, Deng H, Chen W, Peng H. Regulating Valence States of Gold Nanocluster as a New Strategy for the Ultrasensitive Electrochemiluminescence Detection of Kanamycin. Anal Chem 2021;93:4635-40. [PMID: 33661613 DOI: 10.1021/acs.analchem.1c00063] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
194 Yu L, Li M, Kang Q, Fu L, Zou G, Shen D. Bovine serum albumin-stabilized silver nanoclusters with anodic electrochemiluminescence peak at 904 nm in aqueous medium and applications in spectrum-resolved multiplexing immunoassay. Biosensors and Bioelectronics 2021;176:112934. [DOI: 10.1016/j.bios.2020.112934] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
195 Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem 2021;133:7764-8. [DOI: 10.1002/ange.202015030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
196 Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021;60:7686-90. [PMID: 33410245 DOI: 10.1002/anie.202015030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
197 Mo G, He X, Qin D, Jiang X, Zheng X, Deng B. A potential-resolved electrochemiluminescence resonance energy transfer strategy for the simultaneous detection of neuron-specific enolase and the cytokeratin 19 fragment. Analyst 2021;146:1334-9. [PMID: 33367307 DOI: 10.1039/d0an02106g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
198 Ding J, Zhou P, Guo W, Su B. Confined Electrochemiluminescence Generation at Ultra-High-Density Gold Microwell Electrodes. Front Chem 2020;8:630246. [PMID: 33575249 DOI: 10.3389/fchem.2020.630246] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
199 Xu ZH, Gao H, Zhang N, Zhao W, Cheng YX, Xu JJ, Chen HY. Ultrasensitive Nucleic Acid Assay Based on Cyclometalated Iridium(III) Complex with High Electrochemiluminescence Efficiency. Anal Chem 2021;93:1686-92. [PMID: 33378161 DOI: 10.1021/acs.analchem.0c04284] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
200 Li L, Zhang J, Zhao W, Liu X, Luo L, Bi X, Cheng L, You T. DNA-Modified Electrochemiluminescent Tris(4,4’-Dicarboxylicacid-2,2’-Bipyridyl)Ruthenium(II) Dichloride and Assistant DNA-Modified Carbon Nitride Quantum Dots for Hg 2+ Detection. ACS Appl Nano Mater 2021;4:1009-18. [DOI: 10.1021/acsanm.0c02467] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
201 Ge J, Chen X, Yang J, Wang Y. Progress in electrochemiluminescence of nanoclusters: how to improve the quantum yield of nanoclusters. Analyst 2021;146:803-15. [DOI: 10.1039/d0an02110e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
202 Ma C, Wang M, Wei H, Wu S, Zhang J, Zhu J, Chen Z. Catalytic route electrochemiluminescence microscopy of cell membranes with nitrogen-doped carbon dots as nano-coreactants. Chem Commun 2021;57:2168-71. [DOI: 10.1039/d0cc08223f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
203 Halawa MI, Mostafa IM, Wu G, Li BS. Amplified anodic electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) for ultrasensitive detection of bambuterol: Application to content uniformity testing. Journal of Electroanalytical Chemistry 2021;880:114881. [DOI: 10.1016/j.jelechem.2020.114881] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
204 Cao Y, Zhou Y, Lin Y, Zhu J. Hierarchical Metal–Organic Framework-Confined CsPbBr 3 Quantum Dots and Aminated Carbon Dots: A New Self-Sustaining Suprastructure for Electrochemiluminescence Bioanalysis. Anal Chem 2021;93:1818-25. [DOI: 10.1021/acs.analchem.0c04717] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
205 Han D, Goudeau B, Jiang D, Fang D, Sojic N. Electrochemiluminescence Microscopy of Cells: Essential Role of Surface Regeneration. Anal Chem 2021;93:1652-7. [DOI: 10.1021/acs.analchem.0c05123] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
206 Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem 2020;132:23461-7. [DOI: 10.1002/ange.202010216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
207 Brown K, Allan P, Francis PS, Dennany L. Psychoactive Substances and How to Find Them: Electrochemiluminescence as a Strategy for Identification and Differentiation of Drug Species. J Electrochem Soc 2020;167:166502. [DOI: 10.1149/1945-7111/abc9db] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
208 Gao H, Zhang N, Pan JB, Quan YW, Cheng YX, Chen HY, Xu JJ. Aggregation-Induced Electrochemiluminescence of Conjugated Pdots Containing a Trace Ir(III) Complex: Insights into Structure-Property Relationships. ACS Appl Mater Interfaces 2020. [PMID: 33211963 DOI: 10.1021/acsami.0c18197] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
209 Chen J, Cheng G, Wu K, Deng A, Li J. Sensitive and specific detection of ractopamine: An electrochemiluminescence immunosensing strategy fabricated by trimetallic Au@Pd@Pt nanoparticles and triangular gold nanosheets. Electrochimica Acta 2020;361:137061. [DOI: 10.1016/j.electacta.2020.137061] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
210 Han C, Guo W. Fluorescent Noble Metal Nanoclusters Loaded Protein Hydrogel Exhibiting Anti‐Biofouling and Self‐Healing Properties for Electrochemiluminescence Biosensing Applications. Small 2020;16:2002621. [DOI: 10.1002/smll.202002621] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
211 Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020;59:23261-7. [PMID: 32888252 DOI: 10.1002/anie.202010216] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
212 Kim Y, Ohmagari H, Saso A, Tamaoki N, Hasegawa M. Electrofluorochromic Device Based on a Redox-Active Europium(III) Complex. ACS Appl Mater Interfaces 2020;12:46390-6. [PMID: 32931242 DOI: 10.1021/acsami.0c13765] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
213 Voci S, Ismail A, Pham P, Yu J, Maziz A, Mesnilgrente F, Reynaud L, Livache T, Mailley P, Buhot A, Leichle T, Kuhn A, Leroy L, Bouchet-spinelli A, Sojic N. Wireless Enhanced Electrochemiluminescence at a Bipolar Microelectrode in a Solid-State Micropore. J Electrochem Soc 2020;167:137509. [DOI: 10.1149/1945-7111/abbbc1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
214 Zheng Y, Ning Z, Pan D, Han D, Xu Y, Liu S, Zhang Y, Shen Y. Electrochemiluminescent detection of hNQO1 and associated drug screening enabled by futile redox cycle reaction. Sensors and Actuators B: Chemical 2020;321:128557. [DOI: 10.1016/j.snb.2020.128557] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
215 Wang Q, Wang T, Lin H, Meng W, Zhang C, Cai P, Hao T, Wu Y, Guo Z. Disposable Faraday cage-type aptasensor for ultrasensitive determination of sub-picomolar Hg(II) via fast scan voltammetry. Sensors and Actuators B: Chemical 2020;320:128349. [DOI: 10.1016/j.snb.2020.128349] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
216 Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye‐Doped Silica Nanoparticles for Enhanced ECL‐Based Immunoassay Analytical Performance. Angew Chem 2020;132:22042-7. [DOI: 10.1002/ange.202009544] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
217 Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye‐Doped Silica Nanoparticles for Enhanced ECL‐Based Immunoassay Analytical Performance. Angew Chem Int Ed 2020;59:21858-63. [DOI: 10.1002/anie.202009544] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
218 Fiorani A, Han D, Jiang D, Fang D, Paolucci F, Sojic N, Valenti G. Spatially resolved electrochemiluminescence through a chemical lens. Chem Sci 2020;11:10496-500. [PMID: 34123186 DOI: 10.1039/d0sc04210b] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
219 Kotani A. Electrochemiluminescence Sensing. Anal Sci 2020;36:1023-1024. [DOI: 10.2116/analsci.highlights2009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
220 Wang C, Han Q, Mo F, Chen M, Xiong Z, Fu Y. Novel Luminescent Nanostructured Coordination Polymer: Facile Fabrication and Application in Electrochemiluminescence Biosensor for microRNA-141 Detection. Anal Chem 2020;92:12145-51. [PMID: 32786437 DOI: 10.1021/acs.analchem.0c00130] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
221 Huang Z, Li Z, Xu L, Wei C, Zhu C, Deng H, Peng H, Xia X, Chen W. Mechanistic Insight into a Novel Ultrasensitive Nicotine Assay Base on High-Efficiency Quenching of Gold Nanocluster Cathodic Electrochemiluminescence. Anal Chem 2020;92:11438-43. [PMID: 32691587 DOI: 10.1021/acs.analchem.0c02500] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
222 Ding H, Guo W, Zhou P, Su B. Nanocage-confined electrochemiluminescence for the detection of dopamine released from living cells. Chem Commun (Camb) 2020;56:8249-52. [PMID: 32558869 DOI: 10.1039/d0cc03370g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
223 Zhao M, Zeng W, Chai Y, Yuan R, Zhuo Y. An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications. Anal Chem 2020;92:11044-52. [DOI: 10.1021/acs.analchem.0c00152] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
224 Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020;8:5808-25. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
225 He S, Chu K, Wong JM, Yang L, Adsetts JR, Zhang R, Chen Y, Ding Z. Electrochemiluminescence of Bare Glassy Carbon with Benzoyl Peroxide as the Coreactant in N,N-Dimethylformamide. J Anal Test 2020;4:257-63. [DOI: 10.1007/s41664-020-00143-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
226 Xiao Y, Chen S, Zhang G, Li Z, Xiao H, Chen C, He C, Zhang R, Yang X. Simple and rapid nicotine analysis using a disposable silica nanochannel-assisted electrochemiluminescence sensor. Analyst 2020;145:4806-14. [PMID: 32588848 DOI: 10.1039/d0an00588f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
227 Fu Y, Ma Q. Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications. Nanoscale 2020;12:13879-98. [PMID: 32578649 DOI: 10.1039/d0nr02844d] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
228 Dutta P, Han D, Goudeau B, Jiang D, Fang D, Sojic N. Reactivity mapping of luminescence in space: Insights into heterogeneous electrochemiluminescence bioassays. Biosens Bioelectron 2020;165:112372. [PMID: 32729504 DOI: 10.1016/j.bios.2020.112372] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
229 Zhu L, Zhang M, Ye J, Yan M, Zhu Q, Huang J, Yang X. Ratiometric Electrochemiluminescent/Electrochemical Strategy for Sensitive Detection of MicroRNA Based on Duplex-Specific Nuclease and Multilayer Circuit of Catalytic Hairpin Assembly. Anal Chem 2020;92:8614-22. [PMID: 32452205 DOI: 10.1021/acs.analchem.0c01949] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 13.3] [Reference Citation Analysis]
230 Jiang X, Wang H, Chai Y, Shi W, Yuan R. High-Efficiency CNNS@NH 2 -MIL(Fe) Electrochemiluminescence Emitters Coupled with Ti 3 C 2 Nanosheets as a Matrix for a Highly Sensitive Cardiac Troponin I Assay. Anal Chem 2020;92:8992-9000. [DOI: 10.1021/acs.analchem.0c01075] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
231 Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent Advances of Electrochemiluminescent System in Bioassay. J Anal Test 2020;4:57-75. [DOI: 10.1007/s41664-020-00136-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
232 Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BCSJ 2020;93:637-46. [DOI: 10.1246/bcsj.20190365] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
233 Zhang Q, Zhang X, Ma Q. Recent Advances in Visual Electrochemiluminescence Analysis. J Anal Test 2020;4:92-106. [DOI: 10.1007/s41664-020-00129-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
234 Yu L, Zhang Q, Kang Q, Zhang B, Shen D, Zou G. Near-Infrared Electrochemiluminescence Immunoassay with Biocompatible Au Nanoclusters as Tags. Anal Chem 2020;92:7581-7. [DOI: 10.1021/acs.analchem.0c00125] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 17.3] [Reference Citation Analysis]
235 Zhang G, Chai H, Tian M, Zhu S, Qu L, Zhang X. Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity. Anal Chem 2020;92:7354-62. [DOI: 10.1021/acs.analchem.0c01262] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
236 Ding H, Guo W, Su B. Electrochemiluminescence Single‐Cell Analysis: Intensity‐ and Imaging‐Based Methods. ChemPlusChem 2020;85:725-33. [DOI: 10.1002/cplu.202000145] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
237 Wang L, Jiang M, Chai Y, Yuan R, Zhuo Y. Intense electrochemiluminescence from an organic microcrystal accelerated H 2 O 2 -free luminol system for microRNA detection. Chem Commun 2020;56:9000-3. [DOI: 10.1039/d0cc02207a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
238 Hu L, Wu Y, Xu M, Gu W, Zhu C. Recent advances in co-reaction accelerators for sensitive electrochemiluminescence analysis. Chem Commun 2020;56:10989-99. [DOI: 10.1039/d0cc04371k] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 10.7] [Reference Citation Analysis]
239 Li H, Duwald R, Pascal S, Voci S, Besnard C, Bosson J, Bouffier L, Lacour J, Sojic N. Near-infrared electrochemiluminescence in water through regioselective sulfonation of diaza [4] and [6]helicene dyes. Chem Commun 2020;56:9771-9774. [DOI: 10.1039/d0cc04156d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
240 Saqib M, Bashir S, Kitte SA, Li H, Jin Y. Acridine orange as a coreactant for efficient electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium( ii ) and its use in selective and sensitive detection of thiourea. Chem Commun 2020;56:5154-7. [DOI: 10.1039/d0cc01273d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]