BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kokkinos CT, Giokas DL, Economou AS, Petrou PS, Kakabakos SE. Paper-Based Microfluidic Device with Integrated Sputtered Electrodes for Stripping Voltammetric Determination of DNA via Quantum Dot Labeling. Anal Chem 2018;90:1092-7. [DOI: 10.1021/acs.analchem.7b04274] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang J, Jiang H, Pan L, Gu X, Xiao C, Liu P, Tang Y, Fang J, Li X, Lu C. Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front Bioeng Biotechnol 2023;11:1020430. [PMID: 36815884 DOI: 10.3389/fbioe.2023.1020430] [Reference Citation Analysis]
2 Selvam SP, Phan LMT, Cho S. SARS‐CoV‐2 N Gene‐Targeted Anodic Stripping Voltammetry Sensor Using a Novel CoS‐NGQD/Pt@Pd Platform and Au‐DNA‐CdTe QD Probe. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202201344] [Reference Citation Analysis]
3 Mishra A, Patra S, Srivastava V, Uzun L, Mishra YK, Syväjärvi M, Tiwari A. Progress in paper-based analytical devices for climate neutral biosensing. Biosensors and Bioelectronics: X 2022;11:100166. [DOI: 10.1016/j.biosx.2022.100166] [Reference Citation Analysis]
4 Ariño C, Banks CE, Bobrowski A, Crapnell RD, Economou A, Królicka A, Pérez-ràfols C, Soulis D, Wang J. Electrochemical stripping analysis. Nat Rev Methods Primers 2022;2. [DOI: 10.1038/s43586-022-00143-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Tarara M, Giokas DL, Tsogas GZ. Wax-Printed Fluidic Controls for Delaying and Accelerating Fluid Transport on Paper-Based Analytical Devices. Chemosensors 2022;10:155. [DOI: 10.3390/chemosensors10050155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
7 Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. Journal of Electroanalytical Chemistry 2022;909:116140. [DOI: 10.1016/j.jelechem.2022.116140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Sobhanie E, Roshani A, Hosseini M. Microfluidic systems with amperometric and voltammetric detection and paper-based sensors and biosensors. Carbon Nanomaterials-Based Sensors 2022. [DOI: 10.1016/b978-0-323-91174-0.00023-8] [Reference Citation Analysis]
9 Arantes IV, Gongoni JL, Mendes LF, de Ataide VN, Ameku WA, Garcia PT, de Araujo WR, Paixão TR. Electrochemical paper-based analytical devices. Paper-based Analytical Devices for Chemical Analysis and Diagnostics 2022. [DOI: 10.1016/b978-0-12-820534-1.00011-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Xie R, Cheng I, Chen J. East Asian Calligraphy Black Ink-Coated Paper as Flexible Conducting Electrode for Supercapacitor. ECS J Solid State Sci Technol 2021;10:123013. [DOI: 10.1149/2162-8777/ac4389] [Reference Citation Analysis]
11 Ameku WA, Ataide VN, Costa ET, Gomes LR, Napoleão-Pêgo P, William Provance D Jr, Paixão TRLC, Salles MO, De-Simone SG. A Pencil-Lead Immunosensor for the Rapid Electrochemical Measurement of Anti-Diphtheria Toxin Antibodies. Biosensors (Basel) 2021;11:489. [PMID: 34940247 DOI: 10.3390/bios11120489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Khaliliazar S, Toldrà A, Chondrogiannis G, Hamedi MM. Electroanalytical Paper-Based Nucleic Acid Amplification Biosensors with Integrated Thread Electrodes. Anal Chem 2021;93:14187-95. [PMID: 34648274 DOI: 10.1021/acs.analchem.1c02900] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
13 Gong Y, Peng B, Weng X, Jiang H. Fabrication of a novel liquid metal microelectrode in microfluidic chip. Mod Phys Lett B 2021;35:2140005. [DOI: 10.1142/s0217984921400054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Zhang Y, Zhou N. Electrochemical Biosensors Based on Micro‐fabricated Devices for Point‐of‐Care Testing: A Review. Electroanalysis 2022;34:168-83. [DOI: 10.1002/elan.202100281] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Şahin S, Ünlü C, Trabzon L. Affinity biosensors developed with quantum dots in microfluidic systems. Emergent Mater 2021;:1-23. [PMID: 33718778 DOI: 10.1007/s42247-021-00195-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Gholizadeh H, Ong HX, Bradbury P, Kourmatzis A, Traini D, Young P, Li M, Cheng S. Real-time quantitative monitoring of in vitro nasal drug delivery by a nasal epithelial mucosa-on-a-chip model. Expert Opin Drug Deliv 2021;18:803-18. [PMID: 33410717 DOI: 10.1080/17425247.2021.1873274] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
17 Ozkan-ariksoysal D. Electrochemical DNA biosensors based on quantum dots. Electroanalytical Applications of Quantum Dot-Based Biosensors 2021. [DOI: 10.1016/b978-0-12-821670-5.00004-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Khamcharoen W, Siangproh W. A multilayer microfluidic paper coupled with an electrochemical platform developed for sample separation and detection of dopamine. New J Chem 2021;45:12886-12894. [DOI: 10.1039/d1nj02271g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Shi H, Zhang Y, Zhu F, Zhou X, Cheng W, Yang F, Kang W, Zhang X. Portable electrochemical carbon cloth analysis device for differential pulse anodic stripping voltammetry determination of Pb2. Mikrochim Acta 2020;187:613. [PMID: 33068167 DOI: 10.1007/s00604-020-04549-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
20 Kokkinos C, Economou A. Recent advances in voltammetric, amperometric and ion-selective (bio)sensors fabricated by microengineering manufacturing approaches. Current Opinion in Electrochemistry 2020;23:21-5. [DOI: 10.1016/j.coelec.2020.02.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
21 Baharfar M, Rahbar M, Tajik M, Liu G. Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosens Bioelectron 2020;167:112506. [PMID: 32823207 DOI: 10.1016/j.bios.2020.112506] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
22 Jiang D, Huang C, Shao L, Wang X, Jiao Y, Li W, Chen J, Xu X. Magneto-controlled aptasensor for simultaneous detection of ochratoxin A and fumonisin B1 using inductively coupled plasma mass spectrometry with multiple metal nanoparticles as element labels. Anal Chim Acta 2020;1127:182-9. [PMID: 32800122 DOI: 10.1016/j.aca.2020.06.057] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
23 Mazurkiewicz W, Podrażka M, Jarosińska E, Kappalakandy Valapil K, Wiloch M, Jönsson‐niedziółka M, Witkowska Nery E. Paper‐Based Electrochemical Sensors and How to Make Them (Work). ChemElectroChem 2020;7:2939-56. [DOI: 10.1002/celc.202000512] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
24 Gupta S. Biosensors for Modern Healthcare. 2020 International Conference on Intelligent Engineering and Management (ICIEM) 2020. [DOI: 10.1109/iciem48762.2020.9160334] [Reference Citation Analysis]
25 Díaz-González M, de la Escosura-Muñiz A, Fernandez-Argüelles MT, García Alonso FJ, Costa-Fernandez JM. Quantum Dot Bioconjugates for Diagnostic Applications. Top Curr Chem (Cham) 2020;378:35. [PMID: 32219574 DOI: 10.1007/s41061-020-0296-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
26 Bezinge L, Suea-ngam A, deMello AJ, Shih C. Nanomaterials for molecular signal amplification in electrochemical nucleic acid biosensing: recent advances and future prospects for point-of-care diagnostics. Mol Syst Des Eng 2020;5:49-66. [DOI: 10.1039/c9me00135b] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
27 Noviana E, McCord CP, Clark KM, Jang I, Henry CS. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip 2020;20:9-34. [PMID: 31620764 DOI: 10.1039/c9lc00903e] [Cited by in Crossref: 127] [Cited by in F6Publishing: 132] [Article Influence: 31.8] [Reference Citation Analysis]
28 Nsabimana A, Kitte SA, Fereja TH, Halawa MI, Zhang W, Xu G. Recent developments in stripping analysis of trace metals. Current Opinion in Electrochemistry 2019;17:65-71. [DOI: 10.1016/j.coelec.2019.04.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
29 Kokkinos C. Electrochemical DNA Biosensors Based on Labeling with Nanoparticles. Nanomaterials (Basel) 2019;9:E1361. [PMID: 31547500 DOI: 10.3390/nano9101361] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
30 Katseli V, Economou A, Kokkinos C. Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications. Electrochemistry Communications 2019;103:100-3. [DOI: 10.1016/j.elecom.2019.05.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 73] [Article Influence: 18.0] [Reference Citation Analysis]
31 Yakoh A, Chaiyo S, Siangproh W, Chailapakul O. 3D Capillary-Driven Paper-Based Sequential Microfluidic Device for Electrochemical Sensing Applications. ACS Sens 2019;4:1211-21. [PMID: 30969113 DOI: 10.1021/acssensors.8b01574] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 12.3] [Reference Citation Analysis]
32 Martín-Yerga D. Electrochemical Detection and Characterization of Nanoparticles with Printed Devices. Biosensors (Basel) 2019;9:E47. [PMID: 30925772 DOI: 10.3390/bios9020047] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
33 Xue J, Zhang L, Gao C, Zhu P, Yu J. Microfluidic paper-based photoelectrochemical sensing platform with electron-transfer tunneling distance regulation strategy for thrombin detection. Biosens Bioelectron 2019;133:1-7. [PMID: 30901598 DOI: 10.1016/j.bios.2019.03.022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
34 Gao C, Xue J, Zhang L, Zhao P, Cui K, Ge S, Yu J. Paper based modification-free photoelectrochemical sensing platform with single-crystalline aloe like TiO2 as electron transporting material for cTnI detection. Biosens Bioelectron 2019;131:17-23. [PMID: 30798248 DOI: 10.1016/j.bios.2019.01.038] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
35 Grell M, Dincer C, Le T, Lauri A, Nunez Bajo E, Kasimatis M, Barandun G, Maier SA, Cass AEG, Güder F. Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting. Adv Funct Mater 2019;29:1804798. [PMID: 32733177 DOI: 10.1002/adfm.201804798] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
36 Hao N, Lu J, Hua R, Zhao W, Wang K. New Micro- and Nanotechnologies for Electrochemical Biosensor Development. Advanced Biosensors for Health Care Applications 2019. [DOI: 10.1016/b978-0-12-815743-5.00011-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Gao B, Li X, Yang Y, Chu J, He B. Emerging paper microfluidic devices. Analyst 2019;144:6497-511. [DOI: 10.1039/c9an01275c] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
38 Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q, Guo J, Zhu Z, Yang C. Recent Progress in Microfluidics-Based Biosensing. Anal Chem 2019;91:388-404. [DOI: 10.1021/acs.analchem.8b05007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 11.8] [Reference Citation Analysis]
39 Cinti S, Proietti E, Casotto F, Moscone D, Arduini F. Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Anal Chem 2018;90:13680-6. [DOI: 10.1021/acs.analchem.8b04052] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 9.4] [Reference Citation Analysis]
40 Wongkaew N, Simsek M, Griesche C, Baeumner AJ. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem Rev 2019;119:120-94. [DOI: 10.1021/acs.chemrev.8b00172] [Cited by in Crossref: 293] [Cited by in F6Publishing: 303] [Article Influence: 58.6] [Reference Citation Analysis]
41 Li CC, Hu J, Lu M, Zhang CY. Quantum dot-based electrochemical biosensor for stripping voltammetric detection of telomerase at the single-cell level. Biosens Bioelectron 2018;122:51-7. [PMID: 30240966 DOI: 10.1016/j.bios.2018.09.049] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
42 Sierra T, Crevillen AG, Escarpa A. Electrochemical detection based on nanomaterials in CE and microfluidic systems. ELECTROPHORESIS 2019;40:113-23. [DOI: 10.1002/elps.201800281] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
43 Bobrowski A, Królicka A, Śliwa J, Zarębski J, Januś M, Kyzioł K. PVD fabrication of lead film electrodes and their catalytic adsorptive stripping voltammetric performance in the presence of oxidants. Electrochemistry Communications 2018;94:49-54. [DOI: 10.1016/j.elecom.2018.08.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
44 Paschoalino WJ, Kogikoski S, Barragan JTC, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT. Emerging Considerations for the Future Development of Electrochemical Paper-Based Analytical Devices. ChemElectroChem 2019;6:10-30. [DOI: 10.1002/celc.201800677] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 10.4] [Reference Citation Analysis]
45 Economou A, Kokkinos C, Prodromidis M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. Lab Chip 2018;18:1812-30. [DOI: 10.1039/c8lc00025e] [Cited by in Crossref: 87] [Cited by in F6Publishing: 87] [Article Influence: 17.4] [Reference Citation Analysis]