1 |
Wei Y, Zhang Y, Pan J, Chen T, Xing X, Zhang W, Lu Z. Plasmon-Enhanced Electrochemiluminescence at the Single-Nanoparticle Level. Angew Chem Int Ed Engl 2023;62:e202214103. [PMID: 36331900 DOI: 10.1002/anie.202214103] [Reference Citation Analysis]
|
2 |
Wang J, Wang C, Xu J, Xia X, Chen H. Emerging advances in plasmonic nanoassemblies for biosensing and cell imaging. Chinese Chemical Letters 2023. [DOI: 10.1016/j.cclet.2023.108165] [Reference Citation Analysis]
|
3 |
Basak M, Mitra S, Gogoi M, Sinha S, Nemade HB, Bandyopadhyay D. Point-of-Care Biosensing of Urinary Tract Infections Employing Optoplasmonic Surfaces Embedded with Metal Nanotwins. ACS Appl Bio Mater 2022;5:5321-32. [PMID: 36222059 DOI: 10.1021/acsabm.2c00720] [Reference Citation Analysis]
|
4 |
Feng Q, Qin L, Dou B, Han X, Wang P. Plasmon-Tunable Ag@Au Bimetallic Core–Shell Nanostructures to Enhance the Electrochemiluminescence of Quantum Dots for MicroRNA Sensing. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03354] [Reference Citation Analysis]
|
5 |
Yang E, Ning Z, Yin F, Fang Z, Chen M, Zhang M, Xu W, Zhang Y, Shen Y. Surface plasmon-enhanced electrochemiluminescence of P, N-doped carbon dots for ultrasensitive detection of BRAF gene. Sensors and Actuators B: Chemical 2022;369:132288. [DOI: 10.1016/j.snb.2022.132288] [Reference Citation Analysis]
|
6 |
Alemu YA, Rampazzo E, Paolucci F, Prodi L, Valenti G. Strategies of tailored nanomaterials for electrochemiluminescence signal enhancements. Current Opinion in Colloid & Interface Science 2022;61:101621. [DOI: 10.1016/j.cocis.2022.101621] [Reference Citation Analysis]
|
7 |
Huang Y, Yao Y, Wang Y, Chen L, Zeng Y, Li L, Guo L. Strategies for Enhancing the Sensitivity of Electrochemiluminescence Biosensors. Biosensors 2022;12:750. [DOI: 10.3390/bios12090750] [Reference Citation Analysis]
|
8 |
Li X, Ma F, Yang M, Zhang J. Nanomaterial based analytical methods for breast cancer biomarker detection. Materials Today Advances 2022;14:100219. [DOI: 10.1016/j.mtadv.2022.100219] [Reference Citation Analysis]
|
9 |
Li G, Fan Y, Hu Q, Zhang D, Ma Z, Cheng Z, Wang X, Xu J. Morphology and size effect of Pd nanocrystals on formaldehyde and hydrogen sensing performance of SnO2 based gas sensor. Journal of Alloys and Compounds 2022;906:163765. [DOI: 10.1016/j.jallcom.2022.163765] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
|
10 |
Mitra S, Basak M. Diverse bio-sensing and therapeutic applications of plasmon enhanced nanostructures. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.05.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Cong S, Jiang Z, Zhang R, Lv H, Guo J, Zhang L, Lu X. Polymer Carbon Nanodots: A Novel Electrochemiluminophore for Dual Mode Detection of Ferric Ions. Anal Chem 2022;94:6695-702. [PMID: 35483019 DOI: 10.1021/acs.analchem.1c05408] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
|
12 |
Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A, Arnaboldi S. Wireless light-emitting device for the determination of chirality in real samples. Electrochimica Acta 2022. [DOI: 10.1016/j.electacta.2022.140494] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
13 |
Zhao Y, Bouffier L, Xu G, Loget G, Sojic N. Electrochemiluminescence with semiconductor (nano)materials. Chem Sci 2022;13:2528-50. [PMID: 35356679 DOI: 10.1039/d1sc06987j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 24.0] [Reference Citation Analysis]
|
14 |
Liu F, Du F, Yuan F, Quan S, Guan Y, Xu G. Electrochemiluminescence bioassays based on carbon nitride nanomaterials and 2D transition metal carbides. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.100981] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Han D, Li X, Bian X, Wang J, Kong L, Ding S, Yan Y. Localized surface plasmon-enhanced electrochemiluminescence biosensor for rapid, label-free, and single-step detection of broad-spectrum bacteria using urchin-like Au and Ag nanoparticles. Sensors and Actuators B: Chemical 2022;355:131120. [DOI: 10.1016/j.snb.2021.131120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Yin X, Yang J, Zhang M, Wang X, Xu W, Price CH, Huang L, Liu W, Su H, Wang W, Chen H, Hou G, Walker M, Zhou Y, Shen Z, Liu J, Qian K, Di W. Serum Metabolic Fingerprints on Bowl-Shaped Submicroreactor Chip for Chemotherapy Monitoring. ACS Nano 2022;16:2852-65. [PMID: 35099942 DOI: 10.1021/acsnano.1c09864] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
|
17 |
Xiong H, Huang Z, Lin Q, Yang B, Yan F, Liu B, Chen H, Kong J. Surface Plasmon Coupling Electrochemiluminescence Immunosensor Based on Polymer Dots and AuNPs for Ultrasensitive Detection of Pancreatic Cancer Exosomes. Anal Chem 2021. [PMID: 34914878 DOI: 10.1021/acs.analchem.1c03535] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
18 |
Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal Chem 2021. [PMID: 34854296 DOI: 10.1021/acs.analchem.1c04475] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
|
19 |
Wang P, Zhao J, Wang Z, Liang Z, Nie Y, Xu S, Ma Q. Polarization-Resolved Electrochemiluminescence Sensor Based on the Surface Plasmon Coupling Effect of a Au Nanotriangle-Patterned Structure. Anal Chem 2021;93:15785-93. [PMID: 34788002 DOI: 10.1021/acs.analchem.1c04120] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
20 |
Prakash HS, Maroju PA, Boppudi NSS, Balapure A, Ganesan R, Ray Dutta J. Influence of citrate buffer and flash heating in enhancing the sensitivity of ratiometric genosensing of Hepatitis C virus using plasmonic gold nanoparticles. Micro and Nano Syst Lett 2021;9. [DOI: 10.1186/s40486-021-00134-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Ehzari H, Safari M, Samimi M. Signal amplification of novel sandwich-type genosensor via catalytic redox-recycling on platform MWCNTs/Fe3O4@TMU-21 for BRCA1 gene detection. Talanta 2021;234:122698. [PMID: 34364494 DOI: 10.1016/j.talanta.2021.122698] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
22 |
Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021;191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
23 |
Zhang W, Sun X, Zhou A, Li M. When Fluorescent Sensing Meets Electrochemical Amplifying: A Powerful Platform for Gene Detection with High Sensitivity and Specificity. Anal Chem 2021;93:7781-6. [PMID: 34019763 DOI: 10.1021/acs.analchem.1c01404] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
24 |
Zhou H, Ding K, Yu Q, Wang H, Liu J, Wang Z. Enhanced electrochemiluminescence ratiometric cytosensing based on surface plasmon resonance of Au nanoparticles and nanosucculent films. Biosens Bioelectron 2021;189:113367. [PMID: 34091285 DOI: 10.1016/j.bios.2021.113367] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|