BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Van de Walle A, Kolosnjaj-Tabi J, Lalatonne Y, Wilhelm C. Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization. Acc Chem Res 2020;53:2212-24. [PMID: 32935974 DOI: 10.1021/acs.accounts.0c00355] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Alexey V. Yaremenko, Ivan V. Zelepukin, Ilya N. Ivanov, Roman O. Melikov, Nadezhda A. Pechnikova, Dzhuliia Sh. Dzhalilova, Aziz B. Mirkasymov, Vera A. Bragina, Maxim P. Nikitin, Sergey M. Deyev, Petr I. Nikitin. Influence of magnetic nanoparticle biotransformation on contrasting efficiency and iron metabolism. J Nanobiotechnology 2022;20:535. [PMID: 36528614 DOI: 10.1186/s12951-022-01742-w] [Reference Citation Analysis]
2 Bulte JWM, Wang C, Shakeri-Zadeh A. In Vivo Cellular Magnetic Imaging: Labeled vs. Unlabeled Cells. Adv Funct Mater 2022;32:2207626. [PMID: 36589903 DOI: 10.1002/adfm.202207626] [Reference Citation Analysis]
3 Curcio A, Perez JE, Prévéral S, Fromain A, Genevois C, Michel A, de Walle AV, Lalatonne Y, Faivre D, Ménager C, Wilhelm C. The role of tumor model in magnetic targeting of magnetosomes and ultramagnetic liposomes.. [DOI: 10.21203/rs.3.rs-2317102/v1] [Reference Citation Analysis]
4 Lai W, Li D, Wang Q, Ma Y, Tian J, Fang Q. Bacterial Magnetosomes Release Iron Ions and Induce Regulation of Iron Homeostasis in Endothelial Cells. Nanomaterials (Basel) 2022;12. [PMID: 36432281 DOI: 10.3390/nano12223995] [Reference Citation Analysis]
5 Wychowaniec JK, Brougham DF. Emerging Magnetic Fabrication Technologies Provide Controllable Hierarchically-Structured Biomaterials and Stimulus Response for Biomedical Applications. Adv Sci (Weinh) 2022;9:e2202278. [PMID: 36228106 DOI: 10.1002/advs.202202278] [Reference Citation Analysis]
6 Han J, Tian Y, Wang M, Li Y, Yin J, Qu W, Yan C, Ding R, Guan Y, Wang Q. Proteomics unite traditional toxicological assessment methods to evaluate the toxicity of iron oxide nanoparticles. Front Pharmacol 2022;13:1011065. [DOI: 10.3389/fphar.2022.1011065] [Reference Citation Analysis]
7 Demri N, Dumas S, Nguyen M, Gropplero G, Abou‐hassan A, Descroix S, Wilhelm C. Remote Magnetic Microengineering and Alignment of Spheroids into 3D Cellular Fibers. Adv Funct Materials. [DOI: 10.1002/adfm.202204850] [Reference Citation Analysis]
8 Yaremenko AV, Zelepukin IV, Ivanov IN, Melikov RO, Pechnikova NA, Dzhalilova DS, Mirkasymov AB, Bragina VA, Nikitin MP, Deyev SM, Nikitin PI. Influence of Magnetic Nanoparticle Biotransformation on Contrasting Efficiency and Iron Metabolism.. [DOI: 10.21203/rs.3.rs-1946508/v1] [Reference Citation Analysis]
9 Paściak A, Marin R, Abiven L, Pilch-Wróbel A, Misiak M, Xu W, Prorok K, Bezkrovnyi O, Marciniak Ł, Chanéac C, Gazeau F, Bazzi R, Roux S, Viana B, Lehto VP, Jaque D, Bednarkiewicz A. Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35848997 DOI: 10.1021/acsami.2c08013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Li Y, Liu J, Huang L, Liu J, Shu S, Yao J. Embedding defective tin oxide quantum dots into flake Bi4O5I2 for antibacterial and degradation by LED light irradiation. Journal of Environmental Chemical Engineering 2022;10:107626. [DOI: 10.1016/j.jece.2022.107626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Gao Z, Namsrai B, Han Z, Joshi P, Rao JS, Ravikumar V, Sharma A, Ring HL, Idiyatullin D, Magnuson EC, Iaizzo PA, Tolkacheva EG, Garwood M, Rabin Y, Etheridge M, Finger EB, Bischof JC. Vitrification and Rewarming of Magnetic Nanoparticle-Loaded Rat Hearts. Adv Mater Technol 2022;7:2100873. [PMID: 35668819 DOI: 10.1002/admt.202100873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
12 Coral DF, Soto PA, de Sousa E, Brollo MEF, Mera-Córdoba JA, Mendoza Zélis P, Setton-Avruj CP, Roig A, Fernández van Raap MB. Small-angle X-ray scattering to quantify the incorporation and analyze the disposition of magnetic nanoparticles inside cells. J Colloid Interface Sci 2022;608:1-12. [PMID: 34624760 DOI: 10.1016/j.jcis.2021.09.165] [Reference Citation Analysis]
13 Curcio A, Van de Walle A, Péchoux C, Abou-Hassan A, Wilhelm C. In Vivo Assimilation of CuS, Iron Oxide and Iron Oxide@CuS Nanoparticles in Mice: A 6-Month Follow-Up Study. Pharmaceutics 2022;14:179. [PMID: 35057074 DOI: 10.3390/pharmaceutics14010179] [Reference Citation Analysis]
14 Mary G, Malgras B, Perez JE, Nagle I, Luciani N, Pimpie C, Asnacios A, Pocard M, Reffay M, Wilhelm C. Magnetic Compression of Tumor Spheroids Increases Cell Proliferation In Vitro and Cancer Progression In Vivo. Cancers (Basel) 2022;14:366. [PMID: 35053529 DOI: 10.3390/cancers14020366] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Mendez-gonzalez D, Lifante J, Zabala Gutierrez I, Marin R, Ximendes E, Sanz-de Diego E, Iglesias-de la Cruz MC, Teran FJ, Rubio-retama J, Jaque D. Optomagnetic nanofluids for controlled brain hyperthermia: a critical study. Nanoscale 2022. [DOI: 10.1039/d2nr03413a] [Reference Citation Analysis]
16 Nagle I, Delort F, Hénon S, Wilhelm C, Batonnet-pichon S, Reffay M. Multiparameters dependance of tissue shape maintenance in myoblasts multicellular aggregates: the role of intermediate filaments.. [DOI: 10.1101/2021.12.18.473332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Lozano-Pedraza C, Plaza-Mayoral E, Espinosa A, Sot B, Serrano A, Salas G, Blanco-Andujar C, Cotin G, Felder-Flesch D, Begin-Colin S, Teran FJ. Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation. Nanoscale Adv 2021;3:6490-502. [PMID: 36133493 DOI: 10.1039/d1na00601k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Koudan EV, Zharkov MN, Gerasimov MV, Karshieva SS, Shirshova AD, Chrishtop VV, Kasyanov VA, Levin AA, Parfenov VA, Karalkin PA, Pereira FDAS, Petrov SV, Pyataev NA, Khesuani YD, Mironov VA, Sukhorukov GB. Magnetic Patterning of Tissue Spheroids Using Polymer Microcapsules Containing Iron Oxide Nanoparticles. ACS Biomater Sci Eng 2021;7:5206-14. [PMID: 34610738 DOI: 10.1021/acsbiomaterials.1c00805] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
19 Zhao L, Song X, Ouyang X, Zhou J, Li J, Deng D. Bioinspired Virus-like Fe3O4/Au@C Nanovector for Programmable Drug Delivery via Hierarchical Targeting. ACS Appl Mater Interfaces 2021;13:49631-41. [PMID: 34636534 DOI: 10.1021/acsami.1c11261] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Liu J, Huang L, Li Y, Yang L, Wang C, Liu J, Song Y, Yang M, Li H. Construction of oxygen vacancy assisted Z-scheme BiO2-x/BiOBr heterojunction for LED light pollutants degradation and bacteria inactivation. J Colloid Interface Sci 2021;600:344-57. [PMID: 34022730 DOI: 10.1016/j.jcis.2021.04.143] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
21 Senthilkumar N, Sharma PK, Sood N, Bhalla N. Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coordination Chemistry Reviews 2021;445:214082. [DOI: 10.1016/j.ccr.2021.214082] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
22 Ovejero JG, Armenia I, Serantes D, Veintemillas-Verdaguer S, Zeballos N, López-Gallego F, Grüttner C, de la Fuente JM, Puerto Morales MD, Grazu V. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation. Nano Lett 2021;21:7213-20. [PMID: 34410726 DOI: 10.1021/acs.nanolett.1c02178] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
23 Kim H. Analysis of Agglomeration Kinetics of Magnetic Nanoparticles With Boltzmann Distribution of Energy Barrier. Bull Korean Chem Soc 2021;42:973-6. [DOI: 10.1002/bkcs.12302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Curcio A, de Walle AV, Benassai E, Serrano A, Luciani N, Menguy N, Manshian BB, Sargsian A, Soenen S, Espinosa A, Abou-Hassan A, Wilhelm C. Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential. ACS Nano 2021;15:9782-95. [PMID: 34032115 DOI: 10.1021/acsnano.1c00567] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
25 Eftekhari A, Arjmand A, Asheghvatan A, Švajdlenková H, Šauša O, Abiyev H, Ahmadian E, Smutok O, Khalilov R, Kavetskyy T, Cucchiarini M. The Potential Application of Magnetic Nanoparticles for Liver Fibrosis Theranostics. Front Chem 2021;9:674786. [PMID: 34055744 DOI: 10.3389/fchem.2021.674786] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
26 Wang Z, Wang X, Zhang Y, Xu W, Han X. Principles and Applications of Single Particle Tracking in Cell Research. Small 2021;17:e2005133. [PMID: 33533163 DOI: 10.1002/smll.202005133] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]