BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Warmerdam E, Hausdorff JM, Atrsaei A, Zhou Y, Mirelman A, Aminian K, Espay AJ, Hansen C, Evers LJW, Keller A, Lamoth C, Pilotto A, Rochester L, Schmidt G, Bloem BR, Maetzler W. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol 2020;19:462-70. [PMID: 32059811 DOI: 10.1016/S1474-4422(19)30397-7] [Cited by in Crossref: 98] [Cited by in F6Publishing: 103] [Article Influence: 49.0] [Reference Citation Analysis]
Number Citing Articles
1 Celik Y, Vitorio R, Powell D, Moore J, Young F, Coulby G, Tung J, Nouredanesh M, Ellis R, Izmailova ES, Stuart S, Godfrey A. Sensor Integration for Gait Analysis. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00139-4] [Reference Citation Analysis]
2 Rastegari E, Ali H, Marmelat V. Detection of Parkinson’s Disease Using Wrist Accelerometer Data and Passive Monitoring. Sensors 2022;22:9122. [DOI: 10.3390/s22239122] [Reference Citation Analysis]
3 Zajac JA, Cavanaugh JT, Baker T, Duncan RP, Fulford D, Girnis J, Lavalley M, Nordahl T, Porciuncula F, Rawson KS, Saint-hilaire M, Thomas CA, Earhart GM, Ellis TD. Does clinically measured walking capacity contribute to real-world walking performance in Parkinson's disease? Parkinsonism & Related Disorders 2022. [DOI: 10.1016/j.parkreldis.2022.11.016] [Reference Citation Analysis]
4 Mikolaizak AS, Rochester L, Maetzler W, Sharrack B, Demeyer H, Mazzà C, Caulfield B, Garcia-Aymerich J, Vereijken B, Arnera V, Miller R, Piraino P, Ammour N, Gordon MF, Troosters T, Yarnall AJ, Alcock L, Gaßner H, Winkler J, Klucken J, Schlenstedt C, Watz H, Kirsten AM, Vogiatzis I, Chynkiamis N, Hume E, Megaritis D, Nieuwboer A, Ginis P, Buckley E, Brittain G, Comi G, Leocani L, Helbostad JL, Johnsen LG, Taraldsen K, Blain H, Driss V, Frei A, Puhan MA, Polhemus A, Bosch de Basea M, Gimeno E, Hopkinson NS, Buttery SC, Hausdorff JM, Mirelman A, Evers J, Neatrour I, Singleton D, Schwickert L, Becker C, Jansen CP; clinical validation study (WP4) on behalf of Mobilise-D consortium. Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement-the Mobilise-D study protocol. PLoS One 2022;17:e0269615. [PMID: 36201476 DOI: 10.1371/journal.pone.0269615] [Reference Citation Analysis]
5 Rozanski G, Putrino D. Recording context matters: Differences in gait parameters collected by the OneStep smartphone application. Clinical Biomechanics 2022;99:105755. [DOI: 10.1016/j.clinbiomech.2022.105755] [Reference Citation Analysis]
6 Nasrabadi AM, Eslaminia AR, Bakhshayesh PR, Ejtehadi M, Alibiglou L, Behzadipour S. A new scheme for the development of IMU-based activity recognition systems for telerehabilitation. Medical Engineering & Physics 2022;108:103876. [DOI: 10.1016/j.medengphy.2022.103876] [Reference Citation Analysis]
7 Micó-amigo ME, Bonci T, Paraschiv-ionescu A, Ullrich M, Kirk C, Soltani A, Küderle A, Gazit E, Salis F, Alcock L, Aminian K, Becker C, Bertuletti S, Brown P, Buckley E, Cantu A, Carsin A, Caruso M, Caulfield B, Cereatti A, Chiari L, D’ascanio I, Eskofier B, Fernstad S, Froehlich M, Garcia-aymerich J, Hansen C, Hausdorff J, Hiden H, Hume E, Keogh A, Kluge F, Koch S, Maetzler W, Megaritis D, Mueller A, Niessen M, Palmerini L, Schwickert L, Scott K, Sharrack B, Sillén H, Singleton D, Vereijken B, Vogiatzis I, Yarnall A, Rochester L, Mazza C, Din SD. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium.. [DOI: 10.21203/rs.3.rs-2088115/v1] [Reference Citation Analysis]
8 Sasaki JE, Bertochi GFA, Meneguci J, Motl RW. Pedometers and Accelerometers in Multiple Sclerosis: Current and New Applications. Int J Environ Res Public Health 2022;19:11839. [PMID: 36142112 DOI: 10.3390/ijerph191811839] [Reference Citation Analysis]
9 Poewe W, Stankovic I, Halliday G, Meissner WG, Wenning GK, Pellecchia MT, Seppi K, Palma JA, Kaufmann H. Multiple system atrophy. Nat Rev Dis Primers 2022;8:56. [PMID: 36008429 DOI: 10.1038/s41572-022-00382-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mirelman A, Siderowf A, Chahine L. Outcome Assessment in Parkinson Disease Prevention Trials: Utility of Clinical and Digital Measures. Neurology 2022;99:52-60. [PMID: 35970590 DOI: 10.1212/WNL.0000000000200236] [Reference Citation Analysis]
11 Kudelka J, Geritz J, Welzel J, Hildesheim H, Maetzler C, Emmert K, Niemann K, Hobert MA, Pilotto A, Bergmann P, Maetzler W. What contributes most to the SPPB and its subscores in hospitalized geriatric patients: an ICF model-based approach. BMC Geriatr 2022;22:668. [PMID: 35963992 DOI: 10.1186/s12877-022-03358-z] [Reference Citation Analysis]
12 Braun T, Thiel C, Peter RS, Bahns C, Büchele G, Rapp K, Becker C, Grüneberg C. Association of clinical outcome assessments of mobility capacity and incident disability in community-dwelling older adults - a systematic review and meta-analysis. Ageing Res Rev 2022;81:101704. [PMID: 35931411 DOI: 10.1016/j.arr.2022.101704] [Reference Citation Analysis]
13 Scherbaum R, Moewius A, Oppermann J, Geritz J, Hansen C, Gold R, Maetzler W, Tönges L. Parkinson's disease multimodal complex treatment improves gait performance: an exploratory wearable digital device-supported study. J Neurol 2022. [PMID: 35864214 DOI: 10.1007/s00415-022-11257-x] [Reference Citation Analysis]
14 Geritz J, Welzel J, Hansen C, Maetzler C, Hobert MA, Elshehabi M, Sobczak A, Kudelka J, Stiel C, Hieke J, Alpes A, Bunzeck N, Maetzler W. Does Executive Function Influence Walking in Acutely Hospitalized Patients With Advanced Parkinson's Disease: A Quantitative Analysis. Front Neurol 2022;13:852725. [DOI: 10.3389/fneur.2022.852725] [Reference Citation Analysis]
15 Roussos G, Herrero TR, Hill DL, Dowling AV, L T M Müller M, Evers LJW, Burton J, Derungs A, Fisher K, Kilambi KP, Mehrotra N, Bhatnagar R, Sardar S, Stephenson D, Adams JL, Ray Dorsey E, Cosman J. Identifying and characterising sources of variability in digital outcome measures in Parkinson's disease. NPJ Digit Med 2022;5:93. [PMID: 35840653 DOI: 10.1038/s41746-022-00643-4] [Reference Citation Analysis]
16 Ghosal R, Varma VR, Volfson D, Urbanek J, Hausdorff JM, Watts A, Zipunnikov V. Scalar on time-by-distribution regression and its application for modelling associations between daily-living physical activity and cognitive functions in Alzheimer's Disease. Sci Rep 2022;12:11558. [PMID: 35798763 DOI: 10.1038/s41598-022-15528-5] [Reference Citation Analysis]
17 Maremmani C, Rovini E, Salvadori S, Pecori A, Pasquini J, Ciammola A, Rossi S, Berchina G, Monastero R, Cavallo F. Hands-feet wireless devices: Test-retest reliability and discriminant validity of motor measures in Parkinson's disease telemonitoring. Acta Neurol Scand 2022. [PMID: 35788914 DOI: 10.1111/ane.13667] [Reference Citation Analysis]
18 Rodríguez-martín D, Cabestany J, Pérez-lópez C, Pie M, Calvet J, Samà A, Capra C, Català A, Rodríguez-molinero A. A New Paradigm in Parkinson's Disease Evaluation With Wearable Medical Devices: A Review of STAT-ONTM. Front Neurol 2022;13:912343. [DOI: 10.3389/fneur.2022.912343] [Reference Citation Analysis]
19 Mikolaizak AS, Rochester L, Maetzler W, Sharrack B, Demeyer H, Mazzà C, Caulfield B, Garcia-aymerich J, Vereijken B, Arnera V, Miller R, Piraino P, Ammour N, Gordon MF, Troosters T, Yarnall AJ, Alcock L, Gaßner H, Winkler J, Klucken J, Schlenstedt C, Watz H, Kirsten A, Vogiatzis I, Chynkiamis N, Hume E, Megaritis D, Nieuwboer A, Ginis P, Buckley E, Brittain G, Comi G, Leocani L, Helbostad JL, Johnsen LG, Taraldsen K, Blain H, Driss V, Frei A, Puhan MA, Polhemus A, Bosch de Basea M, Gimeno E, Hopkinson NS, Buttery SC, Hausdorff JM, Mirelman A, Evers J, Neatrour I, Singleton D, Schwickert L, Becker C, Jansen C. Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement – the Mobilise-D study protocol.. [DOI: 10.1101/2022.05.25.22275598] [Reference Citation Analysis]
20 Xu Z, Shen B, Tang Y, Wu J, Wang J. Deep Clinical Phenotyping of Parkinson’s Disease: Towards a New Era of Research and Clinical Care. Phenomics 2022. [DOI: 10.1007/s43657-022-00051-4] [Reference Citation Analysis]
21 Vila-viçosa D, Leitão M, Bouça-machado R, Pona-ferreira F, Alberto S, Ferreira JJ, Matias R. Smartphone-Based Body Location-Independent Functional Mobility Analysis in Patients with Parkinson’s Disease: A Step towards Precise Medicine. JPM 2022;12:826. [DOI: 10.3390/jpm12050826] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Romijnders R, Warmerdam E, Hansen C, Schmidt G, Maetzler W. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts. Sensors (Basel) 2022;22:3859. [PMID: 35632266 DOI: 10.3390/s22103859] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Rodriguez-porcel F, Wyman-chick KA, Abdelnour Ruiz C, Toledo JB, Ferreira D, Urwyler P, Weil RS, Kane J, Pilotto A, Rongve A, Boeve B, Taylor J, Mckeith I, Aarsland D, Lewis SJG; the Lewy Body Dementias Clinical Trials Workgroup from the Lewy Body Dementias Professional Interest Area - Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment (ISTAART)+. Clinical outcome measures in dementia with Lewy bodies trials: critique and recommendations. Transl Neurodegener 2022;11. [DOI: 10.1186/s40035-022-00299-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Tsanas A, Arora S. Data-Driven Subtyping of Parkinson’s Using Acoustic Analysis of Sustained Vowels and Cluster Analysis: Findings in the Parkinson’s Voice Initiative Study. SN COMPUT SCI 2022;3:232. [DOI: 10.1007/s42979-022-01123-y] [Reference Citation Analysis]
25 Rehman RZU, Guan Y, Shi JQ, Alcock L, Yarnall AJ, Rochester L, Del Din S. Investigating the Impact of Environment and Data Aggregation by Walking Bout Duration on Parkinson’s Disease Classification Using Machine Learning. Front Aging Neurosci 2022;14:808518. [DOI: 10.3389/fnagi.2022.808518] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wuehr M, Decker J, Schenkel F, Jahn K, Schniepp R. Impact on daily mobility and risk of falling in bilateral vestibulopathy. J Neurol. [DOI: 10.1007/s00415-022-11043-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Hill DL, Stephenson D, Brayanov J, Claes K, Badawy R, Sardar S, Fisher K, Lee SJ, Bannon A, Roussos G, Kangarloo T, Terebaite V, Müller MLTM, Bhatnagar R, Adams JL, Dorsey ER, Cosman J. Metadata Framework to Support Deployment of Digital Health Technologies in Clinical Trials in Parkinson's Disease. Sensors (Basel) 2022;22:2136. [PMID: 35336307 DOI: 10.3390/s22062136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Braun T, Thiel C, Peter RS, Bahns C, Büchele G, Rapp K, Becker C, Grüneberg C. Association of clinical outcome assessments of mobility capacity and incident disability in community-dwelling older adults - a systematic review and meta-analysis.. [DOI: 10.1101/2022.03.02.22271795] [Reference Citation Analysis]
29 Fröhlich H, Bontridder N, Petrovska-delacréta D, Glaab E, Kluge F, Yacoubi ME, Marín Valero M, Corvol J, Eskofier B, Van Gyseghem J, Lehericy S, Winkler J, Klucken J. Leveraging the Potential of Digital Technology for Better Individualized Treatment of Parkinson's Disease. Front Neurol 2022;13:788427. [DOI: 10.3389/fneur.2022.788427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Bonnechère B. Evaluation of Processing Speed of Different Cognitive Functions Across the Life Span Using Cognitive Mobile Games. Games Health J 2022. [PMID: 35180366 DOI: 10.1089/g4h.2021.0144] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Schniepp R, Huppert A, Decker J, Schenkel F, Dieterich M, Brandt T, Wuehr M. Multimodal Mobility Assessment Predicts Fall Frequency and Severity in Cerebellar Ataxia. Cerebellum 2022. [DOI: 10.1007/s12311-021-01365-1] [Reference Citation Analysis]
32 Simonet C, Noyce AJ. Domotics, Smart Homes, and Parkinson's Disease. J Parkinsons Dis 2021;11:S55-63. [PMID: 33612494 DOI: 10.3233/JPD-202398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Shah VV, Curtze C, Sowalsky K, Arpan I, Mancini M, Carlson-kuhta P, El-gohary M, Horak FB, Mcnames J. Inertial Sensor Algorithm to Estimate Walk Distance. Sensors 2022;22:1077. [DOI: 10.3390/s22031077] [Reference Citation Analysis]
34 Bernaldo de Quirós M, Douma EH, van den Akker-Scheek I, Lamoth CJC, Maurits NM. Quantification of Movement in Stroke Patients under Free Living Conditions Using Wearable Sensors: A Systematic Review. Sensors (Basel) 2022;22:1050. [PMID: 35161796 DOI: 10.3390/s22031050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Olmedo-Aguirre JO, Reyes-Campos J, Alor-Hernández G, Machorro-Cano I, Rodríguez-Mazahua L, Sánchez-Cervantes JL. Remote Healthcare for Elderly People Using Wearables: A Review. Biosensors (Basel) 2022;12:73. [PMID: 35200334 DOI: 10.3390/bios12020073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Gupta AS. Digital Phenotyping in Clinical Neurology. Semin Neurol 2022. [PMID: 35016250 DOI: 10.1055/s-0041-1741495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Jaeger SU, Wohlrab M, Schoene D, Tremmel R, Chambers M, Leocani L, Corriol-Rohou S, Klenk J, Sharrack B, Garcia-Aymerich J, Rochester L, Maetzler W, Puhan M, Schwab M, Becker C. Mobility endpoints in marketing authorisation of drugs: what gets the European medicines agency moving? Age Ageing 2022;51:afab242. [PMID: 35077553 DOI: 10.1093/ageing/afab242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Montes J, Eichinger KJ, Pasternak A, Yochai C, Krosschell KJ. A post pandemic roadmap toward remote assessment for neuromuscular disorders: limitations and opportunities. Orphanet J Rare Dis 2022;17:5. [PMID: 34983609 DOI: 10.1186/s13023-021-02165-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Klamroth-marganska V, Giovanoli S, Easthope CA, Schönhammer JG. Telerehabilitation Technology. Neurorehabilitation Technology 2022. [DOI: 10.1007/978-3-031-08995-4_25] [Reference Citation Analysis]
40 Fortune E, Crenshaw JR, Sosnoff JJ. Editorial: Wearable Sensors for Remote Health Monitoring and Intelligent Disease Management. Front Sports Act Living 2021;3:788165. [PMID: 34927069 DOI: 10.3389/fspor.2021.788165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Atrsaei A, Hansen C, Elshehabi M, Solbrig S, Berg D, Liepelt-Scarfone I, Maetzler W, Aminian K. Effect of Fear of Falling on Mobility Measured During Lab and Daily Activity Assessments in Parkinson's Disease. Front Aging Neurosci 2021;13:722830. [PMID: 34916920 DOI: 10.3389/fnagi.2021.722830] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Peraza LR, Kinnunen KM, McNaney R, Craddock IJ, Whone AL, Morgan C, Joules R, Wolz R. An Automatic Gait Analysis Pipeline for Wearable Sensors: A Pilot Study in Parkinson's Disease. Sensors (Basel) 2021;21:8286. [PMID: 34960379 DOI: 10.3390/s21248286] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Habets JGV, Herff C, Kubben PL, Kuijf ML, Temel Y, Evers LJW, Bloem BR, Starr PA, Gilron R, Little S. Rapid Dynamic Naturalistic Monitoring of Bradykinesia in Parkinson's Disease Using a Wrist-Worn Accelerometer. Sensors (Basel) 2021;21:7876. [PMID: 34883886 DOI: 10.3390/s21237876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Martino Cinnera A, Morone G, Marrano S, Vannozzi G, Picerno P. Feasibility of using wearable inertial sensors for assessing gait changes after total knee arthroplasty: a systematic review and meta-analysis. Minerva Orthop 2021;72. [DOI: 10.23736/s2784-8469.21.04137-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Halpern AI, Jansen JAF, Giladi N, Mirelman A, Hausdorff JM. Does Time of Day influence postural control and gait? A review of the literature. Gait Posture 2021;92:153-66. [PMID: 34836768 DOI: 10.1016/j.gaitpost.2021.10.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Carlin T, Hansen C, Vuillerme N. Objective Measurement of Walking Activity Using Wearable Technologies in People with Parkinson Disease: A Systematic Review Protocol. Biomed Hub 2021;6:64-8. [PMID: 34616747 DOI: 10.1159/000516819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Warmerdam E, Romijnders R, Hansen C, Elshehabi M, Zimmermann M, Metzger FG, von Thaler AK, Berg D, Schmidt G, Maetzler W. Arm swing responsiveness to dopaminergic medication in Parkinson's disease depends on task complexity. NPJ Parkinsons Dis 2021;7:89. [PMID: 34611152 DOI: 10.1038/s41531-021-00235-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
48 Smith MD, Brazier DE, Henderson EJ. Current Perspectives on the Assessment and Management of Gait Disorders in Parkinson's Disease. Neuropsychiatr Dis Treat 2021;17:2965-85. [PMID: 34584414 DOI: 10.2147/NDT.S304567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
49 Celik Y, Stuart S, Woo WL, Godfrey A. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations. Sensors (Basel) 2021;21:6476. [PMID: 34640799 DOI: 10.3390/s21196476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Morgan A, Bégin D, Heisz J, Tang A, Thabane L, Richardson J. Measurement properties of remotely or self-administered physical performance measures to assess mobility: a systematic review protocol. Physical Therapy Reviews. [DOI: 10.1080/10833196.2021.1978779] [Reference Citation Analysis]
51 Hallett M, DelRosso LM, Elble R, Ferri R, Horak FB, Lehericy S, Mancini M, Matsuhashi M, Matsumoto R, Muthuraman M, Raethjen J, Shibasaki H. Evaluation of movement and brain activity. Clin Neurophysiol 2021;132:2608-38. [PMID: 34488012 DOI: 10.1016/j.clinph.2021.04.023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
52 Habets JG, Herff C, Kubben PL, Kuijf ML, Temel Y, Evers LJ, Bloem BR, Starr PA, Gilron R, Little S. Rapid dynamic naturalistic monitoring of bradykinesia in Parkinson’s disease using a wrist-worn accelerometer.. [DOI: 10.1101/2021.09.03.458142] [Reference Citation Analysis]
53 Warmerdam E, Romijnders R, Geritz J, Elshehabi M, Maetzler C, Otto JC, Reimer M, Stuerner K, Baron R, Paschen S, Beyer T, Dopcke D, Eiken T, Ortmann H, Peters F, Recke FV, Riesen M, Rohwedder G, Schaade A, Schumacher M, Sondermann A, Maetzler W, Hansen C. Proposed Mobility Assessments with Simultaneous Full-Body Inertial Measurement Units and Optical Motion Capture in Healthy Adults and Neurological Patients for Future Validation Studies: Study Protocol. Sensors (Basel) 2021;21:5833. [PMID: 34502726 DOI: 10.3390/s21175833] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
54 de Aquino CH. Methodological Issues in Randomized Clinical Trials for Prodromal Alzheimer's and Parkinson's Disease. Front Neurol 2021;12:694329. [PMID: 34421799 DOI: 10.3389/fneur.2021.694329] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
55 Kluge F, Del Din S, Cereatti A, Gaßner H, Hansen C, Helbostad JL, Klucken J, Küderle A, Müller A, Rochester L, Ullrich M, Eskofier BM, Mazzà C; Mobilise-D consortium. Consensus based framework for digital mobility monitoring. PLoS One 2021;16:e0256541. [PMID: 34415959 DOI: 10.1371/journal.pone.0256541] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
56 Del Din S, Kirk C, Yarnall AJ, Rochester L, Hausdorff JM. Body-Worn Sensors for Remote Monitoring of Parkinson's Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead. J Parkinsons Dis 2021;11:S35-47. [PMID: 33523020 DOI: 10.3233/JPD-202471] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
57 Bouça-Machado R, Pona-Ferreira F, Leitão M, Clemente A, Vila-Viçosa D, Kauppila LA, Costa RM, Matias R, Ferreira JJ. Feasibility of a Mobile-Based System for Unsupervised Monitoring in Parkinson's Disease. Sensors (Basel) 2021;21:4972. [PMID: 34372208 DOI: 10.3390/s21154972] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
58 Corrà MF, Atrsaei A, Sardoreira A, Hansen C, Aminian K, Correia M, Vila-Chã N, Maetzler W, Maia L. Comparison of Laboratory and Daily-Life Gait Speed Assessment during ON and OFF States in Parkinson's Disease. Sensors (Basel) 2021;21:3974. [PMID: 34207565 DOI: 10.3390/s21123974] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
59 van den Bergh R, Bloem BR, Meinders MJ, Evers LJW. The state of telemedicine for persons with Parkinson's disease. Curr Opin Neurol 2021;34:589-97. [PMID: 33990100 DOI: 10.1097/WCO.0000000000000953] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
60 Miranda-Duro MDC, Nieto-Riveiro L, Concheiro-Moscoso P, Groba B, Pousada T, Canosa N, Pereira J. Analysis of Older Adults in Spanish Care Facilities, Risk of Falling and Daily Activity Using Xiaomi Mi Band 2. Sensors (Basel) 2021;21:3341. [PMID: 34064993 DOI: 10.3390/s21103341] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Lindh-Rengifo M, Jonasson SB, Ullén S, Mattsson-Carlgren N, Nilsson MH. Perceived walking difficulties in Parkinson's disease - predictors and changes over time. BMC Geriatr 2021;21:221. [PMID: 33794786 DOI: 10.1186/s12877-021-02113-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
62 Bouça-Machado R, Branco D, Fonseca G, Fernandes R, Abreu D, Guerreiro T, Ferreira JJ; CNS Physiotherapy Study group. Kinematic and Clinical Outcomes to Evaluate the Efficacy of a Multidisciplinary Intervention on Functional Mobility in Parkinson's Disease. Front Neurol 2021;12:637620. [PMID: 33833729 DOI: 10.3389/fneur.2021.637620] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
63 Büttner C, Milani TL, Sichting F. Integrating a Potentiometer into a Knee Brace Shows High Potential for Continuous Knee Motion Monitoring. Sensors (Basel) 2021;21:2150. [PMID: 33808554 DOI: 10.3390/s21062150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Tran F, Schirmer JH, Ratjen I, Lieb W, Helliwell P, Burisch J, Schulz J, Schrinner F, Jaeckel C, Müller-Ladner U, Schreiber S, Hoyer BF. Patient Reported Outcomes in Chronic Inflammatory Diseases: Current State, Limitations and Perspectives. Front Immunol 2021;12:614653. [PMID: 33815372 DOI: 10.3389/fimmu.2021.614653] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Williamson JR, Telfer B, Mullany R, Friedl KE. Detecting Parkinson's Disease from Wrist-Worn Accelerometry in the U.K. Biobank. Sensors (Basel) 2021;21:2047. [PMID: 33799420 DOI: 10.3390/s21062047] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
66 Atrsaei A, Corrà MF, Dadashi F, Vila-Chã N, Maia L, Mariani B, Maetzler W, Aminian K. Gait speed in clinical and daily living assessments in Parkinson's disease patients: performance versus capacity. NPJ Parkinsons Dis 2021;7:24. [PMID: 33674597 DOI: 10.1038/s41531-021-00171-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
67 Habets JGV, Heijmans M, Leentjens AFG, Simons CJP, Temel Y, Kuijf ML, Kubben PL, Herff C. A Long-Term, Real-Life Parkinson Monitoring Database Combining Unscripted Objective and Subjective Recordings. Data 2021;6:22. [DOI: 10.3390/data6020022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
68 Agrawal Y, Merfeld DM, Horak FB, Redfern MS, Manor B, Westlake KP, Holstein GR, Smith PF, Bhatt T, Bohnen NI, Lipsitz LA. Aging, Vestibular Function, and Balance: Proceedings of a National Institute on Aging/National Institute on Deafness and Other Communication Disorders Workshop. J Gerontol A Biol Sci Med Sci 2020;75:2471-80. [PMID: 32617555 DOI: 10.1093/gerona/glaa097] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
69 Romijnders R, Warmerdam E, Hansen C, Welzel J, Schmidt G, Maetzler W. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients. J Neuroeng Rehabil 2021;18:28. [PMID: 33549105 DOI: 10.1186/s12984-021-00828-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
70 Varma VR, Ghosal R, Hillel I, Volfson D, Weiss J, Urbanek J, Hausdorff JM, Zipunnikov V, Watts A. Continuous gait monitoring discriminates community-dwelling mild Alzheimer's disease from cognitively normal controls. Alzheimers Dement (N Y) 2021;7:e12131. [PMID: 33598530 DOI: 10.1002/trc2.12131] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
71 Pilotto A, Rizzetti MC, Lombardi A, Hansen C, Biggi M, Verzeroli G, Martinelli A, Romijnders R, Borroni B, Maetzler W, Padovani A. Cerebellar rTMS in PSP: a Double-Blind Sham-Controlled Study Using Mobile Health Technology. Cerebellum 2021;20:662-6. [PMID: 33544370 DOI: 10.1007/s12311-021-01239-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
72 Sica M, Tedesco S, Crowe C, Kenny L, Moore K, Timmons S, Barton J, O'Flynn B, Komaris DS. Continuous home monitoring of Parkinson's disease using inertial sensors: A systematic review. PLoS One 2021;16:e0246528. [PMID: 33539481 DOI: 10.1371/journal.pone.0246528] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
73 Vila-Viçosa D, Clemente A, Pona-Ferreira F, Leitão M, Bouça-Machado R, Kauppila LA, Costa RM, Matias R, Ferreira JJ. Unsupervised Walking Activity Assessment Reveals COVID-19 Impact on Parkinson's Disease Patients. Mov Disord 2021;36:531-2. [PMID: 33427331 DOI: 10.1002/mds.28514] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
74 Abdelgawwad A, Mallofre AC, Patzold M. A Trajectory-Driven 3D Channel Model for Human Activity Recognition. IEEE Access 2021;9:103393-406. [DOI: 10.1109/access.2021.3098951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Morris R, Mancin M. Lab-on-a-chip: wearables as a one stop shop for free-living assessments. Digital Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00017-x] [Reference Citation Analysis]
76 Kluge F, Din SD, Cereatti A, Gaßner H, Hansen C, Helbostad JL, Klucken J, Küderle A, Müller A, Rochester L, Ullrich M, Eskofier BM, Mazzà C, Mobilise-D consortium. Consensus based framework for digital mobility monitoring.. [DOI: 10.1101/2020.12.18.20248404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
77 Baroudi L, Newman MW, Jackson EA, Barton K, Shorter KA, Cain SM. Estimating Walking Speed in the Wild. Front Sports Act Living 2020;2:583848. [PMID: 33345151 DOI: 10.3389/fspor.2020.583848] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
78 Shah VV, McNames J, Mancini M, Carlson-Kuhta P, Spain RI, Nutt JG, El-Gohary M, Curtze C, Horak FB. Laboratory versus daily life gait characteristics in patients with multiple sclerosis, Parkinson's disease, and matched controls. J Neuroeng Rehabil 2020;17:159. [PMID: 33261625 DOI: 10.1186/s12984-020-00781-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
79 Rochester L, Mazzà C, Mueller A, Caulfield B, McCarthy M, Becker C, Miller R, Piraino P, Viceconti M, Dartee WP, Garcia-Aymerich J, Aydemir AA, Vereijken B, Arnera V, Ammour N, Jackson M, Hache T, Roubenoff R. A Roadmap to Inform Development, Validation and Approval of Digital Mobility Outcomes: The Mobilise-D Approach. Digit Biomark 2020;4:13-27. [PMID: 33442578 DOI: 10.1159/000512513] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 16.5] [Reference Citation Analysis]
80 Corrà MF, Warmerdam E, Vila-Chã N, Maetzler W, Maia L. Wearable Health Technology to Quantify the Functional Impact of Peripheral Neuropathy on Mobility in Parkinson's Disease: A Systematic Review. Sensors (Basel) 2020;20:E6627. [PMID: 33228056 DOI: 10.3390/s20226627] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
81 Warmerdam E, Romijnders R, Welzel J, Hansen C, Schmidt G, Maetzler W. Quantification of Arm Swing during Walking in Healthy Adults and Parkinson's Disease Patients: Wearable Sensor-Based Algorithm Development and Validation. Sensors (Basel) 2020;20:E5963. [PMID: 33096899 DOI: 10.3390/s20205963] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
82 Shah VV, McNames J, Harker G, Mancini M, Carlson-Kuhta P, Nutt JG, El-Gohary M, Curtze C, Horak FB. Effect of Bout Length on Gait Measures in People with and without Parkinson's Disease during Daily Life. Sensors (Basel) 2020;20:E5769. [PMID: 33053703 DOI: 10.3390/s20205769] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
83 Evers LJ, Raykov YP, Krijthe JH, Silva de Lima AL, Badawy R, Claes K, Heskes TM, Little MA, Meinders MJ, Bloem BR. Real-Life Gait Performance as a Digital Biomarker for Motor Fluctuations: The Parkinson@Home Validation Study. J Med Internet Res 2020;22:e19068. [PMID: 33034562 DOI: 10.2196/19068] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
84 Schootemeijer S, van der Kolk NM, Bloem BR, de Vries NM. Current Perspectives on Aerobic Exercise in People with Parkinson's Disease. Neurotherapeutics 2020;17:1418-33. [PMID: 32808252 DOI: 10.1007/s13311-020-00904-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
85 Navratilova D, Krobot A, Otruba P, Nevrly M, Krahulik D, Kolar P, Kolarova B, Kaiserova M, Mensikova K, Vastik M, Kurcova S, Kanovsky P. Deep Brain Stimulation Effects on Gait Pattern in Advanced Parkinson's Disease Patients. Front Neurosci 2020;14:814. [PMID: 32922256 DOI: 10.3389/fnins.2020.00814] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
86 Alexander S, Peryer G, Gray E, Barkhof F, Chataway J. Wearable technologies to measure clinical outcomes in multiple sclerosis: A scoping review. Mult Scler 2021;27:1643-56. [PMID: 32749928 DOI: 10.1177/1352458520946005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
87 Artusi CA, Imbalzano G, Sturchio A, Pilotto A, Montanaro E, Padovani A, Lopiano L, Maetzler W, Espay AJ. Implementation of Mobile Health Technologies in Clinical Trials of Movement Disorders: Underutilized Potential. Neurotherapeutics 2020;17:1736-46. [PMID: 32734442 DOI: 10.1007/s13311-020-00901-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
88 Carcreff L, Gerber CN, Paraschiv-Ionescu A, De Coulon G, Aminian K, Newman CJ, Armand S. Walking Speed of Children and Adolescents With Cerebral Palsy: Laboratory Versus Daily Life. Front Bioeng Biotechnol 2020;8:812. [PMID: 32766230 DOI: 10.3389/fbioe.2020.00812] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
89 Wuehr M, Huppert A, Schenkel F, Decker J, Jahn K, Schniepp R. Independent domains of daily mobility in patients with neurological gait disorders. J Neurol 2020;267:292-300. [PMID: 32533324 DOI: 10.1007/s00415-020-09893-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
90 Atrsaei A, Dadashi F, Hansen C, Warmerdam E, Mariani B, Maetzler W, Aminian K. Postural transitions detection and characterization in healthy and patient populations using a single waist sensor. J Neuroeng Rehabil 2020;17:70. [PMID: 32493496 DOI: 10.1186/s12984-020-00692-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
91 Evers LJ, Raykov YP, Krijthe JH, Silva de Lima AL, Badawy R, Claes K, Heskes TM, Little MA, Meinders MJ, Bloem BR. Real-Life Gait Performance as a Digital Biomarker for Motor Fluctuations: The Parkinson@Home Validation Study (Preprint).. [DOI: 10.2196/preprints.19068] [Reference Citation Analysis]