BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu L, Li N, Sun L, Zheng D, Shao G. Non-coding RNAs: The key detectors and regulators in cardiovascular disease. Genomics 2021;113:1233-46. [PMID: 33164830 DOI: 10.1016/j.ygeno.2020.10.024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Ramesh A, Research Scholar, Department of Computer Science and Engineering, College of BGS Institute of Technology (BGSIT), Adichunchanagiri University (ACU), B.G. Nagara, Nagamangala (Karnataka), India, Subbaraya DCK, Kumar DGKR, Registrar, Adichunchanagiri University (ACU), B.G. Nagara, Nagamangala (Karnataka), India, Department of R&D (CSE), IT Head, Adichunchanagiri University (ACU), B.G. Nagara, Nagamangala (Karnataka), India.. AI based Dynamic Prediction Model for Mobile Health Application System. IJEAT 2023;12:19-29. [DOI: 10.35940/ijeat.c3984.0212323] [Reference Citation Analysis]
2 Zhang L, Lou Q, Zhang W, Yang W, Li L, Zhao H, Kong Y, Li W. CircCAMTA1 facilitates atrial fibrosis by regulating the miR-214-3p/TGFBR1 axis in atrial fibrillation. J Mol Histol 2023;54:55-65. [PMID: 36417034 DOI: 10.1007/s10735-022-10110-9] [Reference Citation Analysis]
3 Qin Z, Wang X, Zhou Y, Zheng J, Li H, Li L. Upregulation of miR-29b-3p alleviates coronary microembolization-induced myocardial injury via regulating BMF and GSK-3β. Apoptosis 2023;28:210-21. [PMID: 36315357 DOI: 10.1007/s10495-022-01788-z] [Reference Citation Analysis]
4 Claridge B, Drack A, Pinto AR, Greening DW. Defining cardiac fibrosis complexity and regulation towards therapeutic development. Clinical and Translational Dis 2023;3. [DOI: 10.1002/ctd2.163] [Reference Citation Analysis]
5 Almaghrbi H, Giordo R, Pintus G, Zayed H. Non-coding RNAs as biomarkers of myocardial infarction. Clin Chim Acta 2023;540:117222. [PMID: 36627010 DOI: 10.1016/j.cca.2023.117222] [Reference Citation Analysis]
6 Allahverdy J, Rashidi N. MicroRNAs induced by Listeria monocytogenes and their role in cells. Microb Pathog 2023;175:105997. [PMID: 36669673 DOI: 10.1016/j.micpath.2023.105997] [Reference Citation Analysis]
7 van Nieuwenhoven FA, Schroen B, Barile L, van Middendorp L, Prinzen FW, Auricchio A. Plasma Extracellular Vesicles as Liquid Biopsy to Unravel the Molecular Mechanisms of Cardiac Reverse Remodeling Following Resynchronization Therapy? J Clin Med 2023;12. [PMID: 36675594 DOI: 10.3390/jcm12020665] [Reference Citation Analysis]
8 Huang CC, Yang PK, Huang YS, Chen SU, Yang YS, Chen MJ. The role of circulating miRNAs in mechanism of action and prediction of therapeutic responses of metformin in polycystic ovarian syndrome. Fertil Steril 2023:S0015-0282(23)00003-1. [PMID: 36627014 DOI: 10.1016/j.fertnstert.2022.12.045] [Reference Citation Analysis]
9 Xu L, Tian L, Yan Z, Wang J, Xue T, Sun Q. Diagnostic and prognostic value of miR-486-5p, miR-451a, miR-21-5p and monocyte to high-density lipoprotein cholesterol ratio in patients with acute myocardial infarction. Heart Vessels 2023;38:318-31. [PMID: 36214846 DOI: 10.1007/s00380-022-02172-2] [Reference Citation Analysis]
10 Chitcharoen S, Phokaew C, Mauleekoonphairoj J, Khongphatthanayothin A, Sutjaporn B, Wandee P, Poovorawan Y, Nademanee K, Payungporn S. Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome. Genomics Inform 2022;20:e44. [PMID: 36617651 DOI: 10.5808/gi.22047] [Reference Citation Analysis]
11 Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022;40:800-25. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Reference Citation Analysis]
12 Singh D, Roy J. A large-scale benchmark study of tools for the classification of protein-coding and non-coding RNAs. Nucleic Acids Res 2022;50:12094-111. [PMID: 36420898 DOI: 10.1093/nar/gkac1092] [Reference Citation Analysis]
13 Sygitowicz G, Sitkiewicz D. Involvement of circRNAs in the Development of Heart Failure. Int J Mol Sci 2022;23. [PMID: 36430607 DOI: 10.3390/ijms232214129] [Reference Citation Analysis]
14 Coppedè F, Franzago M, Giardina E, Nigro CL, Matullo G, Moltrasio C, Nacmias B, Pileggi S, Sirchia SM, Stoccoro A, Storlazzi CT, Stuppia L, Tricarico R, Merla G. A perspective on diet, epigenetics and complex diseases: where is the field headed next? Epigenomics 2022. [DOI: 10.2217/epi-2022-0239] [Reference Citation Analysis]
15 Niu Y, Chang P, Liu T, Shen X, Zhao H, Zhang M, Lei S, Chen B, Yu J. Obese mice induced by high-fat diet have differential expression of circular RNAs involved in endoplasmic reticulum stress and neuronal synaptic plasticity of hippocampus leading to obesity-associated cognitive impairment. Front Mol Neurosci 2022;15:1000482. [DOI: 10.3389/fnmol.2022.1000482] [Reference Citation Analysis]
16 Chen B, Zheng L, Zhu T, Jiao K. LncRNA FOXD3-AS1 aggravates myocardial ischemia/reperfusion injury by inactivating the Redd1/AKT/GSK3β/Nrf2 signaling pathway via the miR-128/TXNIP axis. J Biochem Mol Toxicol 2022;:e23218. [PMID: 36098178 DOI: 10.1002/jbt.23218] [Reference Citation Analysis]
17 Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.952949] [Reference Citation Analysis]
18 Zhu L, Sun L, Xu G, Song J, Hu B, Fang Z, Dan Y, Li N, Shao G. The diagnostic value of has_circ_0006423 in non-small cell lung cancer and its role as a tumor suppressor gene that sponges miR-492. Sci Rep 2022;12:13722. [PMID: 35962012 DOI: 10.1038/s41598-022-17816-6] [Reference Citation Analysis]
19 Niu X, Huang Y, Lu H, Li S, Huang S, Ran X, Wang J. CircRNAs in Xiang pig ovaries among diestrus and estrus stages. Porcine Health Manag 2022;8:29. [PMID: 35739583 DOI: 10.1186/s40813-022-00270-1] [Reference Citation Analysis]
20 Yu Z, Wang J, Nan F, Shi W, Zhang X, Jiang S, Wang B. Human Cytomegalovirus Induced Aberrant Expression of Non-coding RNAs. Front Microbiol 2022;13:918213. [DOI: 10.3389/fmicb.2022.918213] [Reference Citation Analysis]
21 Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, Niu J, Zhao L. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer 2022;21:115. [PMID: 35581586 DOI: 10.1186/s12943-022-01591-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Zhang X, Gao Y, Wu H, Mao Y. Hsa_circ_0003748 promotes disease progression in rheumatic valvular heart disease by sponging miR-577. J Clin Lab Anal 2022;:e24487. [PMID: 35535387 DOI: 10.1002/jcla.24487] [Reference Citation Analysis]
23 Su D, Huang Y, Liu D, Huang Y, Ye B, Qin S, Chen C, Pang Y. Bioinformatic analysis of dysregulated circular RNAs in pediatric pulmonary hypertension linked congenital heart disease. Transl Pediatr 2022;11:715-27. [PMID: 35685074 DOI: 10.21037/tp-22-117] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Gan J, Gu T, Yang H, Ao Z, Cai G, Hong L, Wu Z. Non-Coding RNAs Regulate Spontaneous Abortion: A Global Network and System Perspective. Int J Mol Sci 2022;23:4214. [PMID: 35457031 DOI: 10.3390/ijms23084214] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Lu H, Yang Y, Kuang D, Liu P, Yang J. Expression profile of circRNA in peripheral blood mononuclear cells of patients with rheumatoid arthritis. BMC Med Genomics 2022;15:77. [PMID: 35379246 DOI: 10.1186/s12920-022-01225-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev 2022;182:114045. [PMID: 34767865 DOI: 10.1016/j.addr.2021.114045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Lu P, Ding F, Xiang YK, Hao L, Zhao M. Noncoding RNAs in Cardiac Hypertrophy and Heart Failure. Cells 2022;11:777. [DOI: 10.3390/cells11050777] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
28 Wang X, Li Z, Du Y, Xing Y, Guo Y, Zhang Y, Guo R, Gong W, Nie S, Wang X. lncRNA Mirt1: A Critical Regulatory Factor in Chronic Intermittent Hypoxia Exaggerated Post-MI Cardiac Remodeling. Front Genet 2022;13:818823. [DOI: 10.3389/fgene.2022.818823] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Anderson KM, Anderson DM. LncRNAs at the heart of development and disease. Mamm Genome 2022. [PMID: 35048139 DOI: 10.1007/s00335-021-09937-6] [Reference Citation Analysis]
30 Zhu L, Wang Z, Sun L, Zheng D, Hu B, Li N, Shao G. Hsa_circ_0000437 upregulates and promotes disease progression in rheumatic valvular heart disease. J Clin Lab Anal 2021;:e24197. [PMID: 34952991 DOI: 10.1002/jcla.24197] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Yang Y, Wang Z, Yao M, Xiong W, Wang J, Fang Y, Yang W, Jiang H, Song N, Liu L, Qian J. Oxytocin Protects Against Isoproterenol-Induced Cardiac Hypertrophy by Inhibiting PI3K/AKT Pathway via a lncRNA GAS5/miR-375-3p/KLF4-Dependent Mechanism. Front Pharmacol 2021;12:766024. [DOI: 10.3389/fphar.2021.766024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zheng Y, Zhang Y, Zhang X, Dang Y, Cheng Y, Hua W, Teng M, Wang S, Lu X. Novel lncRNA-miRNA-mRNA Competing Endogenous RNA Triple Networks Associated Programmed Cell Death in Heart Failure. Front Cardiovasc Med 2021;8:747449. [PMID: 34692796 DOI: 10.3389/fcvm.2021.747449] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
33 Feng X, Luo D, Wei G, Zhan F, Hua F, Xu G. Non-coding RNAs: The key regulators in NLRP3 inflammasome-mediated inflammatory diseases. Int Immunopharmacol 2021;100:108105. [PMID: 34481143 DOI: 10.1016/j.intimp.2021.108105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Wu M, Yu Z, Li X, Zhang X, Wang S, Yang S, Hu L, Liu L. Paeonol for the Treatment of Atherosclerotic Cardiovascular Disease: A Pharmacological and Mechanistic Overview. Front Cardiovasc Med 2021;8:690116. [PMID: 34368250 DOI: 10.3389/fcvm.2021.690116] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Zhou Y, Li T, Chen Z, Huang J, Qin Z, Li L. Overexpression of lncRNA TUG1 Alleviates NLRP3 Inflammasome-Mediated Cardiomyocyte Pyroptosis Through Targeting the miR-186-5p/XIAP Axis in Coronary Microembolization-Induced Myocardial Damage. Front Immunol 2021;12:637598. [PMID: 34163467 DOI: 10.3389/fimmu.2021.637598] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
36 Chen X, Guo DY, Yin TL, Yang J. Non-Coding RNAs Regulate Placental Trophoblast Function and Participate in Recurrent Abortion. Front Pharmacol 2021;12:646521. [PMID: 33967782 DOI: 10.3389/fphar.2021.646521] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
37 Burg S, Attali B. Targeting of Potassium Channels in Cardiac Arrhythmias. Trends Pharmacol Sci 2021;42:491-506. [PMID: 33858691 DOI: 10.1016/j.tips.2021.03.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
38 Zhou Y, Long MY, Chen ZQ, Huang JW, Qin ZB, Li L. Downregulation of miR-181a-5p alleviates oxidative stress and inflammation in coronary microembolization-induced myocardial damage by directly targeting XIAP. J Geriatr Cardiol 2021;18:426-39. [PMID: 34220972 DOI: 10.11909/j.issn.1671-5411.2021.06.007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]